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Definition (DDT)
The DDT of f:{0,1}" — {0,1}" is a 2" x 2" table such that

DDT¢[a, b] = #{x € {0,1}", f(x) ® f(x ® a) = b}.
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Definition (DDT)
The DDT of f:{0,1}" — {0,1}" is a 2" x 2" table such that

DDT¢[a, b] = #{x € {0,1}", f(x) ® f(x ® a) = b}.

Definition (APN)
f:{0,1}" — {0,1}" is called APN if and only if

DDT¢[a,b] < 2 for all a# 0, b.

In other words: the DDT only contains 0 and 2.

The Big APN Problem

Does there exist an APN permutation on GF(2") if n is even?

For n = 6, yes! [Dillon et al., 2009]
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Introduction

Our Decomposition (and Main Theorem)

The APN permutation of Dillon et al. is affine-equivalent to...

|

A1 L 3 bits

A
A

N

QO | ©e

o

m for any 3-bit APN permutation A (e.g. x — x3)
m for any a such that Tr(a) = 0, # 0.
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Decomposing the Permutation
m S-Box Reverse-Engineering
m Decomposing the Dillon Permutation

m Implementation
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Decomposing the Permutation S-Box Reverse-Engineering

S-Box Reverse-Engineering

Using only the look-up table, reverse-engineering an S-Box means
recovering unpublished information, e.g.:

m what properties were optimized?
m what structure was used to build it?
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Decomposing the Permutation S-Box Reverse-Engineering

S-Box Reverse-Engineering

Using only the look-up table, reverse-engineering an S-Box means
recovering unpublished information, e.g.:

m what properties were optimized?

m what structure was used to build it?

Possible Targets

m S-Box of Skipjack [BP, CRYPT02015]
m S-Box of Streebog/Kuznechik, [BPU, EUROCRYPT2016]
[ oao

m The Dillon permutation!
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Decomposing the Dillon Permutation
Linear Approximation Table (LAT)

Definition (LAT, Fourier Transform, Walsh Spectrum)

The LAT of f: {0,1}" — {0,1}" is a 2" x 2" matrix £ where

Lla,b] = #{x €Fl,a-x=b-f(x)} — 2",
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Decomposing the Permutation Decomposing the Dillon Permutation

Jackson Pollock

The absolute LAT of Sg.
white=0, grey=4, black=8
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Decomposing the Permutation Decomposing the Dillon Permutation

Jackson Pollock

The absolute LAT of Sp. The absolute LAT of 1o Sp.
white=0, grey=4, black=8 7 is a linear permutation.
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Decomposing the Permutation Decomposing the Dillon Permutation

TU-Decomposition

m T and U are keyed permutations
(mini-block ciphers).

U<
Jf £ 2

Decomposition of 1o Sg.
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Decomposing the Permutation Decomposing the Dillon Permutation

TU-Decomposition

m 7 and U are keyed permutations
(mini-block ciphers).

m T and U~! are related
— only attack T.

» T 01 2 3 45 6 7

K JINERSERE
1

1 $ |4 320056 17

Decomposition of 10 Sg. 733 5 2 1 4 6 7 0

T./1 2 0 6 4 3 7 5

Ts /6 5 2 4 7 0 1 3

Te |5 2 6 4 0 3 1 7

.12 01 6 5 3 4 7
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Decomposing the Permutation Decomposing the Dillon Permutation

Decomposing T

(a) Detaching a
linear Feistel
round.
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Decomposing the Permutation Decomposing the Dillon Permutation

Decomposing T

(d) Detaching a (e) Splitting T'*
linear Feistel into N and L.
round.
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Decomposing the Permutation Decomposing the Dillon Permutation

Decomposing T

(g) Detaching a (h) Splitting T/7* (i) Simplifying N
linear Feistel into N and L. into Z and linear
round. functions.
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2= 1 D P e
Decomposing T and U

Deduce a decomposition (see picture).
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2= 1 D P e
Decomposing T and U

Deduce a decomposition (see picture).
Get rid of constant additions.

Find a nicer representation of M.
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Decomposing the Permutation Decomposing the Dillon Permutation

Final Decomposition

N
)

r
X

m Branch size: 3

m Tr(a)=0

e le€{3,5,6}
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Decomposing the Permutation Implementation

Bit-Sliced Implementation

Function Ao(Xo, ...
1.

._.
o

Biryukov, Perrin, Udovenko (uni.lu)

© ® N o 0k w N

7X5)

11.
t=(Xs A X3) 12,
Xo =t @ (Xs A Xa) 3
o=t 1.
X2 &= (Xa V X3) 15.
t=(X1V Xo) 16.
Xo ®= (X2 A X1) @ Xa 17.
X1 &= (Xa A Xo) B Xs & X3 18
Xo =1t D X3 19.
Xz &= X1 20.
Xo &= X2 & Xo 21

Cryptanalysis of a Theorem

Xs &= Xo

u=2Xs

t=Xa

X3 &=t
Xz3=X35ANXsPt
Xa &= ((—Xs) A u)
Xs &= (t V u)

. t:(Xz/\Xo)

X3d=tD (X2 /\X1)
Xy =1t
Xs &= (X1 V Xo)

August 17, 2016
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The Butterfly Structure
Plan

The Butterfly Structure
m Regular Butterflies
m Feistel Networks
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LW TG WA IS  Regular Butterflies
Definition

m We generalize the structure to any odd branch size:

( Xe \
x1/e
o
¢ ¢ 40, >P >O—>P
>< «Q «
¢ OF, x° x€
a
x° x¢ =P x©
¢ x¢€
Open (bijective) butterfly HS. Closed (non-bijective) butterfly V<.
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LW TG WA IS  Regular Butterflies

CCZ-equivalence

Two functions are CCZ-equivalent if their graphs are affine-equivalent.
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el
CCZ-equivalence

Two functions are CCZ-equivalent if their graphs are affine-equivalent.

CCZ-equivalence preserves
m differential uniformity (maximum DDT coefficient),

m non-linearity (=> max coefficient in the LAT).
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el
CCZ-equivalence

Two functions are CCZ-equivalent if their graphs are affine-equivalent.

CCZ-equivalence preserves
m differential uniformity (maximum DDT coefficient),

m non-linearity (=> max coefficient in the LAT).

Lemma

Open and closed butterflies are CCZ-equivalent!
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LW TG WA IS  Regular Butterflies

Properties

Theorem (For v # 0, 1)

Consider butterflies operating on 2n bits with n odd and e = 3 x 2°.
Differential The diff. uniformity of V& and HS is at most 4.
Algebraic deg(V2) =2, deg(HSY) = n + 1.
Nonlinearity (Experimental for small n): NL(VS) = NL(H) = 227=1 — 2n
The best known to be possible.
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Feistel Networks
Feistel Network (o = 1)

< x¢€
)T(
xl/e —P x¢ x¢ x¢
P >P
< x¢€
Fe (note F€ = HY). Closed butterfly V1.
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R L=
Properties of Feistel Butterflies

Theorem (For o =1, i.e. the Feistel case)

Consider butterflies operating on 2n bits with n odd and e = 3 x 2t.

Differential The diff. uniformity of V1 and H} is exactly 4. The DDT of
V1 contains only 0 and 4.

Algebraic deg(V1) =2, deg(HL) = n.
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el
Properties of Feistel Butterflies

Theorem (For o =1, i.e. the Feistel case)

Consider butterflies operating on 2n bits with n odd and e = 3 x 2t.

Differential The diff. uniformity of V1 and H} is exactly 4. The DDT of
V1 contains only 0 and 4.

Algebraic deg(V1) =2, deg(HL) = n.

Theorem (CCZ-equivalence with a monomial)

Consider butterflies operating on 2n bits with n odd and e = 2°% + 1
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el
Properties of Feistel Butterflies

Theorem (For o =1, i.e. the Feistel case)

Consider butterflies operating on 2n bits with n odd and e = 3 x 2t.

Differential The diff. uniformity of V1 and H} is exactly 4. The DDT of
V1 contains only 0 and 4.

Algebraic deg(V1) =2, deg(HL) = n.

Theorem (CCZ-equivalence with a monomial)

Consider butterflies operating on 2n bits with n odd and e = 2°% + 1
V1 (Lai-Massey-like structure) is Affine-Equivalent to x + x€ in F3”,
HL (Feistel Network) is CCZ-equivalent to the same function.
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Properties of the APN Permutation
Plan

Properties of the APN Permutation
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Flexibility

Consider APN butterflies over 6 bits.
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Properties of the APN Permutation

Flexibility
Consider APN butterflies over 6 bits.
¢ Ak m A can be any APN permutation,
41 m « can be any element # 0,1 with Tr(a) =0,

m We can XOR any values around the center,

We can apply identical 3 x 3 linear
permutations on the branches around the
A center.

I

We can swap branches before/after the center
(breaks AE but not CCZ-equivalence)

A
3
u
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Multiplicative Stability

m For (a,b) € (F5)?, (c,d) € (F5)?, we define

(a,b) ® (c,d) = (ac, bd).
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Multiplicative Stability

m For (a,b) € (F5)?, (c,d) € (F5)?, we define

(a,b) ® (c,d) = (ac, bd).

m For closed butterflies,
Ve(Ax, Ay) = (A%, 2%) @ Ve(x, y),
m and for open ones:

He(A°x, \y) = (A%, A) @ He(x,y).
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Properties of the APN Permutation

Parallel Bent Functions

m V3 is affine-equivalent to (x, y) — Q(x, y)||Q(y, x), with

Q(x,y) = X3(1 + a2) + x2y.
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Properties of the APN Permutation

Parallel Bent Functions

m V3 is affine-equivalent to (x, y) — Q(x, y)||Q(y, x), with
Q(x,y) = x3(1 4+ a?) + x3y.

m Q is bent (Maiorana-McFarland structure)
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Univariate Representation (1/2)

From Dillon et al. (g is their APN permutation):

_ -1
g= f2 © fl )
where
filz) = w3BLS | 3340 4 2834 4 25,33 | 43,32
Wz + w2220 4 217 4 216 4 gptpl2

7..10 58
wr +w 28 + w920 -+ wdz® + w3y

wia® +w02? + vz

4

+ o+ o+

and

w2098 4 80440 4 46,34 4 6,33 | 61,32
WLyt 4 53220 4 61,17 4 54,16 | 55,12
w310 4 w338 4 1926 | 65 4 45 5

w16m3 +’UJ37$2 +w27a:.

f2(2)

+ o+ +
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Univariate Representation (2/2)

Other definitions

It still works if we redefine f1, f:

fQ(X) — W28X48 + W61X34 -+ W12X20 + W16X8 +X6 + W2X.
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Univariate Representation (2/2)

Other definitions

It still works if we redefine f1, f:

fQ(X) — W28X48 + W61X34 -+ W12X20 + W16X8 —|—X6 + W2X.

Another decomposition

gis APN if g =iomoi ! and either

i(X) _ W37X48 +X34 + W49X20 + W21X8 + W30X6 + x, m(x) _ X8,
or

i(x) = w?x3 4 x2° £ x8 4+ x, m(x) = wx® + wx.
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Kim Mapping

m The "Kim mapping" is the APN function r(x) = x3 + x'0 + wx?4.
m Not a permutation.
m Already known (not found by Dillon et al.).
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Kim Mapping

Properties
m The "Kim mapping" is the APN function r(x) = x3 + x'0 + wx?4.
m Not a permutation.
m Already known (not found by Dillon et al.).
Dillon permutation

CCZ-equiv.

Kim mapping



Kim Mapping

m The "Kim mapping" is the APN function r(x) = x3 + x'0 + wx?4.
m Not a permutation.
m Already known (not found by Dillon et al.).

. . affine-equiv.
Dillon permutation < > Open Butterfly H§
CCZ-equiv. CCZ-equiv.
. . affine-equiv.
Kim mapping ¢ > Closed Butterfly V§
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Conc' USEon

Conclusion

There is a Decomposition of the 6-bit APN permutation!
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Conclusion

There is a Decomposition of the 6-bit APN permutation!

Open Problems

Is the non-linearity of a 2n-bit butterfly always 227—1 — 277
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Conc' USEon

Conclusion

There is a Decomposition of the 6-bit APN permutation!

Open Problems

Is the non-linearity of a 2n-bit butterfly always 227—1 — 277

Are there APN Butterflies for n > 37?

Thank you!
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