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Introduction

Definition (DDT)

The DDT of f : {0, 1}n → {0, 1}n is a 2n × 2n table such that

DDTf [a, b] = #
{︀
x ∈ {0, 1}n, f (x)⊕ f (x ⊕ a) = b

}︀
.

Definition (APN)

f : {0, 1}n → {0, 1}n is called APN if and only if

DDTf [a, b] ≤ 2 for all a ̸= 0, b.

In other words: the DDT only contains 0 and 2.

The Big APN Problem

Does there exist an APN permutation on GF (2n) if n is even?

For n = 6, yes! [Dillon et al., 2009]
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Introduction

Our Decomposition (and Main Theorem)

The APN permutation of Dillon et al. is affine-equivalent to...

𝒜

𝒜−1

⊙
𝛼

⊕

⊕
3 bits

𝒜

𝒜

⊙
𝛼

⊕

⊕

for any 3-bit APN permutation 𝒜 (e.g. x ↦→ x3)
for any 𝛼 such that Tr(𝛼) = 0, 𝛼 ̸= 0.
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Decomposing the Permutation S-Box Reverse-Engineering

S-Box Reverse-Engineering

Definition
Using only the look-up table, reverse-engineering an S-Box means
recovering unpublished information, e.g.:

what properties were optimized?
what structure was used to build it?

Possible Targets

S-Box of Skipjack [BP, CRYPTO2015]
S-Box of Streebog/Kuznechik, [BPU, EUROCRYPT2016]
...
The Dillon permutation!
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Decomposing the Permutation Decomposing the Dillon Permutation

Linear Approximation Table (LAT)

Definition (LAT, Fourier Transform, Walsh Spectrum)

The LAT of f : {0, 1}n → {0, 1}n is a 2n × 2n matrix ℒ where

ℒ[a, b] = #{x ∈ Fn
2, a · x = b · f (x)} − 2n−1.
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Decomposing the Permutation Decomposing the Dillon Permutation

Jackson Pollock

The absolute LAT of S0.
white=0, grey=4, black=8

→

The absolute LAT of 𝜂 ∘ S0.
𝜂 is a linear permutation.
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Decomposing the Permutation Decomposing the Dillon Permutation

TU-Decomposition

T

U

Decomposition of 𝜂 ∘ S0.

T and U are keyed permutations
(mini-block ciphers).

T and U−1 are related
=⇒ only attack T .

0 1 2 3 4 5 6 7
T0 0 6 4 7 3 1 5 2
T1 7 5 1 6 4 2 0 3
T2 4 3 2 0 5 6 1 7
T3 3 5 2 1 4 6 7 0
T4 1 2 0 6 4 3 7 5
T5 6 5 2 4 7 0 1 3
T6 5 2 6 4 0 3 1 7
T7 2 0 1 6 5 3 4 7
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Decomposing the Permutation Decomposing the Dillon Permutation

Decomposing T

T ′−1

t⊕

(a) Detaching a
linear Feistel
round.

L

t

N
⊕

⊕

(b) Splitting T ′−1

into N and L.

L

t

ℐ

p
⊕

⊕

(c) Simplifying N
into ℐ and linear
functions.
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Decomposing T

T ′−1

t⊕

(d) Detaching a
linear Feistel
round.

L

t

N
⊕

⊕

(e) Splitting T ′−1

into N and L.

L

t

ℐ

p
⊕

⊕

(f) Simplifying N
into ℐ and linear
functions.
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Decomposing the Permutation Decomposing the Dillon Permutation

Decomposing T

T ′−1

t⊕

(g) Detaching a
linear Feistel
round.

L

t

N
⊕

⊕

(h) Splitting T ′−1

into N and L.

L

t

ℐ

p
⊕

⊕

(i) Simplifying N
into ℐ and linear
functions.
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Decomposing the Permutation Decomposing the Dillon Permutation

Decomposing T and U

1 Deduce a decomposition (see picture).

2 Get rid of constant additions.
3 Find a nicer representation of M.

ℐ

ℐ
5 5

M
5 5
ℐ

ℐ
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Decomposing the Permutation Decomposing the Dillon Permutation

Final Decomposition

xe

x1/e

⊙
𝛼

⊕

⊕

xe

xe

⊙
𝛼

⊕

⊕

Branch size: 3

Tr(𝛼) = 0

e ∈ {3, 5, 6}
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Decomposing the Permutation Implementation

Bit-Sliced Implementation

Function A0(X0, ...,X5)

1. t = (X5 ∧ X3)

2. X0 ⊕= t ⊕ (X5 ∧ X4)

3. X1 ⊕= t

4. X2 ⊕= (X4 ∨ X3)

5. t = (X1 ∨ X0)

6. X0 ⊕= (X2 ∧ X1)⊕ X4

7. X1 ⊕= (X2 ∧ X0)⊕ X5 ⊕ X3

8. X2 ⊕= t ⊕ X3

9. X3 ⊕= X1

10. X4 ⊕= X2 ⊕ X0

11. X5 ⊕= X0

12. u = X3

13. t = X4

14. X3 ⊕= t

15. X3 = X3 ∧ X5 ⊕ t

16. X4 ⊕= ((¬X5) ∧ u)

17. X5 ⊕= (t ∨ u)

18. t = (X2 ∧ X0)

19. X3 ⊕= t ⊕ (X2 ∧ X1)

20. X4 ⊕= t

21. X5 ⊕= (X1 ∨ X0)
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The Butterfly Structure Regular Butterflies

Definition

We generalize the structure to any odd branch size:

xe

x1/e

⊙
𝛼

⊕

⊕

xe

xe

⊙
𝛼

⊕

⊕

Open (bijective) butterfly H𝛼
e .

⊙
𝛼

⊕

xe

xe ⊕

⊙
𝛼

⊕

xe

xe ⊕

Closed (non-bijective) butterfly V𝛼
e .

Biryukov, Perrin, Udovenko (uni.lu) Cryptanalysis of a Theorem August 17, 2016 12 / 23



The Butterfly Structure Regular Butterflies

CCZ-equivalence

Definition
Two functions are CCZ-equivalent if their graphs are affine-equivalent.

Theorem
CCZ-equivalence preserves

differential uniformity (maximum DDT coefficient),
non-linearity ( =⇒ max coefficient in the LAT).

Lemma
Open and closed butterflies are CCZ-equivalent!
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The Butterfly Structure Regular Butterflies

Properties

Theorem (For 𝛼 ̸= 0, 1)

Consider butterflies operating on 2n bits with n odd and e = 3× 2t .
Differential The diff. uniformity of V𝛼

e and H𝛼
e is at most 4.

Algebraic deg(V𝛼
e ) = 2, deg(H𝛼

e ) = n + 1.
Nonlinearity (Experimental for small n): NL(V𝛼

e ) = NL(H𝛼
e ) = 22n−1 − 2n.

The best known to be possible.
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The Butterfly Structure Feistel Networks

Feistel Network (𝛼 = 1)

xe⊕

x1/e ⊕

xe⊕

Fe (note Fe = H1
e ).

xe xe xe

⊕

⊕⊕

Closed butterfly V1
e .
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The Butterfly Structure Feistel Networks

Properties of Feistel Butterflies

Theorem (For 𝛼 = 1, i.e. the Feistel case)

Consider butterflies operating on 2n bits with n odd and e = 3× 2t .
Differential The diff. uniformity of V1

e and H1
e is exactly 4. The DDT of

V1
e contains only 0 and 4.

Algebraic deg(V1
e) = 2, deg(H1

e) = n.

Theorem (CCZ-equivalence with a monomial)

Consider butterflies operating on 2n bits with n odd and e = 22k + 1
1 V1

e (Lai-Massey-like structure) is Affine-Equivalent to x ↦→ xe in F2n
2 ,

2 H1
e (Feistel Network) is CCZ-equivalent to the same function.
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Properties of the APN Permutation
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Properties of the APN Permutation

Flexibility

Consider APN butterflies over 6 bits.

𝒜

𝒜−1

⊙𝛼

⊕

⊕

𝒜

𝒜

⊙
𝛼

⊕

⊕

𝒜 can be any APN permutation,

𝛼 can be any element ̸= 0, 1 with Tr(𝛼) = 0,

We can XOR any values around the center,

We can apply identical 3× 3 linear
permutations on the branches around the
center.

We can swap branches before/after the center
(breaks AE but not CCZ-equivalence)

Biryukov, Perrin, Udovenko (uni.lu) Cryptanalysis of a Theorem August 17, 2016 17 / 23



Properties of the APN Permutation

Flexibility

Consider APN butterflies over 6 bits.

𝒜

𝒜−1

⊙𝛼

⊕

⊕

𝒜

𝒜

⊙
𝛼

⊕

⊕

𝒜 can be any APN permutation,

𝛼 can be any element ̸= 0, 1 with Tr(𝛼) = 0,

We can XOR any values around the center,

We can apply identical 3× 3 linear
permutations on the branches around the
center.

We can swap branches before/after the center
(breaks AE but not CCZ-equivalence)

Biryukov, Perrin, Udovenko (uni.lu) Cryptanalysis of a Theorem August 17, 2016 17 / 23



Properties of the APN Permutation

Multiplicative Stability

For (a, b) ∈ (Fn
2)

2, (c , d) ∈ (Fn
2)

2, we define

(a, b)⊗ (c , d) = (ac, bd).

For closed butterflies,

Ve
𝛼(𝜆x , 𝜆y) = (𝜆e , 𝜆e)⊗ Ve

𝛼(x , y),

and for open ones:

He
𝛼(𝜆ex , 𝜆y) = (𝜆e , 𝜆)⊗ He

𝛼(x , y).
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Properties of the APN Permutation

Parallel Bent Functions

V3
𝛼 is affine-equivalent to (x , y) ↦→ Q(x , y)||Q(y , x), with

Q(x , y) = x3(1+ 𝛼2) + x2y .

Q is bent (Maiorana-McFarland structure)
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Properties of the APN Permutation

Univariate Representation (1/2)
From Dillon et al. (g is their APN permutation):
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Properties of the APN Permutation

Univariate Representation (2/2)

Other definitions
It still works if we redefine f1, f2:{︃

f1(x) = w11x34 + w53x20 + x8 + x ,
f2(x) = w28x48 + w61x34 + w12x20 + w16x8 + x6 + w2x .

Another decomposition

g is APN if g = i ∘ m ∘ i−1 and either

i(x) = w37x48 + x34 + w49x20 + w21x8 + w30x6 + x , m(x) = x8,

or

i(x) = w21x34 + x20 + x8 + x , m(x) = w52x8 + w36x .
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Properties of the APN Permutation

Kim Mapping

Properties

The "Kim mapping" is the APN function 𝜅(x) = x3 + x10 + wx24.
Not a permutation.
Already known (not found by Dillon et al.).

Dillon permutation

Kim mapping

CCZ-equiv.

Open Butterfly H𝛼
3

Closed Butterfly V𝛼
3

CCZ-equiv.

affine-equiv.

affine-equiv.
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Conclusion
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Conclusion Conclusion

Conclusion

There is a Decomposition of the 6-bit APN permutation!

Open Problems

1 Is the non-linearity of a 2n-bit butterfly always 22n−1 − 2n?

2 Are there APN Butterflies for n > 3?

Thank you!
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