
Attacks and Countermeasures
for White-box Designs

Alex Biryukov, Aleksei Udovenko

CSC and SnT, University of Luxembourg

December 5, 2018

Plan

1 Introduction

2 Attacks on Masked White-box Implementations

3 Countermeasures

4 Algebraic Security

0 / 19

White-box

Implementation fully available, secret key unextractable
Extra: one-wayness, incompressibility, traitor traceability, ...

The most challenging direction (this talk):
white-box implementations of
existing symmetric primitives, e.g. the AES
“Cryptographic obfuscation”

1 / 19

White-box

Implementation fully available, secret key unextractable
Extra: one-wayness, incompressibility, traitor traceability, ...

The most challenging direction (this talk):
white-box implementations of
existing symmetric primitives, e.g. the AES
“Cryptographic obfuscation”

1 / 19

White-box: Industry vs Academia

many applications
strong need for practical
white-box
industry does WB:
hidden designs

theory: approaches using
iO/FE, currently
impractical
practical WB-AES:
few attempts
(2002-2017),
all broken
powerful DCA attack
(CHES 2016)

2 / 19

White-box: Industry vs Academia

many applications
strong need for practical
white-box
industry does WB:
hidden designs

theory: approaches using
iO/FE, currently
impractical
practical WB-AES:
few attempts
(2002-2017),
all broken
powerful DCA attack
(CHES 2016)

2 / 19

White-box: Industry vs Academia

many applications
strong need for practical
white-box
industry does WB:
hidden designs

theory: approaches using
iO/FE, currently
impractical
practical WB-AES:
few attempts
(2002-2017),
all broken
powerful DCA attack
(CHES 2016)

2 / 19

White-Box: Differential Computation Analysis (DCA)

DCA = Differential Power Analysis (DPA)
applied to white-box implementations
Most of the implementations broken automatically

Side-Channel protection: masking schemes

this talk:
Can we apply the masking protection for white-box impl.?

3 / 19

White-Box: Differential Computation Analysis (DCA)

DCA = Differential Power Analysis (DPA)
applied to white-box implementations
Most of the implementations broken automatically
Side-Channel protection: masking schemes

this talk:
Can we apply the masking protection for white-box impl.?

3 / 19

White-Box: Differential Computation Analysis (DCA)

DCA = Differential Power Analysis (DPA)
applied to white-box implementations
Most of the implementations broken automatically
Side-Channel protection: masking schemes

this talk:
Can we apply the masking protection for white-box impl.?

3 / 19

General Setting

Boolean circuits
Obfuscated reference implementation

Predictable values: computations from ref. impl., e.g.

s = Bit1(SBox(pt1 ⊕ k1))

Masking: ∃v1, . . . , vt nodes (shares), f : Ft
2 → F2 s.t. for any

encryption
f (v1, . . . , vt) = s

4 / 19

General Setting

Boolean circuits
Obfuscated reference implementation
Predictable values: computations from ref. impl., e.g.

s = Bit1(SBox(pt1 ⊕ k1))

Masking: ∃v1, . . . , vt nodes (shares), f : Ft
2 → F2 s.t. for any

encryption
f (v1, . . . , vt) = s

4 / 19

General Setting

Boolean circuits
Obfuscated reference implementation
Predictable values: computations from ref. impl., e.g.

s = Bit1(SBox(pt1 ⊕ k1))

Masking: ∃v1, . . . , vt nodes (shares), f : Ft
2 → F2 s.t. for any

encryption
f (v1, . . . , vt) = s

4 / 19

Masking Schemes

Example: Boolean masking: linear decoder f =
⨁︀

i vi

Example: FHE: non-linear decoder f

Aim for efficient schemes: relatively small t (number of shares)

⇒ can be secure only if the locations of the shares in the circuit are
unknown!

this talk: exploring this possibility

5 / 19

Masking Schemes

Example: Boolean masking: linear decoder f =
⨁︀

i vi

Example: FHE: non-linear decoder f
Aim for efficient schemes: relatively small t (number of shares)

⇒ can be secure only if the locations of the shares in the circuit are
unknown!

this talk: exploring this possibility

5 / 19

Masking Schemes

Example: Boolean masking: linear decoder f =
⨁︀

i vi

Example: FHE: non-linear decoder f
Aim for efficient schemes: relatively small t (number of shares)

⇒ can be secure only if the locations of the shares in the circuit are
unknown!

this talk: exploring this possibility

5 / 19

Plan

1 Introduction

2 Attacks on Masked White-box Implementations

3 Countermeasures

4 Algebraic Security

5 / 19

Attacks I

Combinatorial attacks:

(partially) guess locations of the shares
probabilistic: correlation with predictable values
exact: time-memory trade-off

Fault attacks:

new application: recover locations of the shares
1- and 2- share fault injections
applicability depends on protections

6 / 19

Attacks I

Combinatorial attacks:

(partially) guess locations of the shares
probabilistic: correlation with predictable values
exact: time-memory trade-off

Fault attacks:

new application: recover locations of the shares
1- and 2- share fault injections
applicability depends on protections

6 / 19

Attacks II

(Generalized) Differential Computation Analysis (DCA):

7 / 19

Attacks II

(Generalized) Differential Computation Analysis (DCA):

7 / 19

Attacks II

(Generalized) Differential Computation Analysis (DCA):

7 / 19

The Linear Algebra Attack (1)

consider the Boolean masking (the linear decoder)
matching with a predictable value s:
a basic linear algebra problem:

M × z = s, M = [v1 | . . . | vn]

vi is the vector of values computed in the node i of the circuit
z is a vector indicating locations of shares among nodes of the
circuit
higher-order masking does not help...

8 / 19

The Linear Algebra Attack (1)

consider the Boolean masking (the linear decoder)
matching with a predictable value s:
a basic linear algebra problem:

M × z = s, M = [v1 | . . . | vn]

vi is the vector of values computed in the node i of the circuit
z is a vector indicating locations of shares among nodes of the
circuit
higher-order masking does not help...

8 / 19

The Linear Algebra Attack (2)

Generalizations:

nonlinear decoders, through linearization technique
approximately linear decoders, through LPN algorithms

semi-linear decoders:
1 assume s · r is computed/shared in the circuit, where
2 s is a predictable value
3 r is unpredictable (pseudorandom, ≈ uniform)
4 choose plaintexts p1, . . . , pD such that:

s(pi) = 0 for 1 ≤ i ≤ D − 1,
s(pi) = 1 for i = D.

5 s · r will be equal to (0, 0, . . . , 0, 1) with Pr = 1/2
6 if s is guessed wrong, such vector is unlikely to be a solution

9 / 19

The Linear Algebra Attack (2)

Generalizations:

nonlinear decoders, through linearization technique
approximately linear decoders, through LPN algorithms
semi-linear decoders:

1 assume s · r is computed/shared in the circuit, where
2 s is a predictable value
3 r is unpredictable (pseudorandom, ≈ uniform)

4 choose plaintexts p1, . . . , pD such that:
s(pi) = 0 for 1 ≤ i ≤ D − 1,
s(pi) = 1 for i = D.

5 s · r will be equal to (0, 0, . . . , 0, 1) with Pr = 1/2
6 if s is guessed wrong, such vector is unlikely to be a solution

9 / 19

The Linear Algebra Attack (2)

Generalizations:

nonlinear decoders, through linearization technique
approximately linear decoders, through LPN algorithms
semi-linear decoders:

1 assume s · r is computed/shared in the circuit, where
2 s is a predictable value
3 r is unpredictable (pseudorandom, ≈ uniform)
4 choose plaintexts p1, . . . , pD such that:

s(pi) = 0 for 1 ≤ i ≤ D − 1,
s(pi) = 1 for i = D.

5 s · r will be equal to (0, 0, . . . , 0, 1) with Pr = 1/2
6 if s is guessed wrong, such vector is unlikely to be a solution

9 / 19

Plan

1 Introduction

2 Attacks on Masked White-box Implementations

3 Countermeasures

4 Algebraic Security

9 / 19

Our Framework: Two Components

Value Hiding Structure Hiding

1 DCA side-channel attack
2 (new) linear algebra attack

1 circuit analysis /
simplification

2 fault injections
3 pseudorandomness

removal
4 etc.

(hopefully) easier to solve independently

10 / 19

Our Framework: Two Components

Value Hiding Structure Hiding

1 DCA side-channel attack
2 (new) linear algebra attack

1 circuit analysis /
simplification

2 fault injections
3 pseudorandomness

removal
4 etc.

(hopefully) easier to solve independently

10 / 19

Our Framework: Two Components

Value Hiding Structure Hiding

1 DCA side-channel attack
2 (new) linear algebra attack

1 circuit analysis /
simplification

2 fault injections
3 pseudorandomness

removal
4 etc.

(hopefully) easier to solve independently

10 / 19

Our Framework: Two Components

Value Hiding Structure Hiding

1 DCA side-channel attack
2 (new) linear algebra attack

1 circuit analysis /
simplification

2 fault injections
3 pseudorandomness

removal
4 etc.

(hopefully) easier to solve independently

10 / 19

Value Hiding

Our solution for value hiding:

1 non-linear masking (vs linear algebra attack)
2 classic linear masking (vs DCA correlation attack)
3 provable security against the linear algebra attack

11 / 19

Plan

1 Introduction

2 Attacks on Masked White-box Implementations

3 Countermeasures

4 Algebraic Security

11 / 19

Algebraic Security (1/2)

Security Model:

1 random bits allowed

as in classic masking
model unpredictability
in WB impl. as
pseudorandom

2 Goal:
any f ∈ span{vi} is
unpredictable

3 isolated from obfuscation
problems

12 / 19

Algebraic Security (1/2)

Security Model:

1 random bits allowed

as in classic masking
model unpredictability
in WB impl. as
pseudorandom

2 Goal:
any f ∈ span{vi} is
unpredictable

3 isolated from obfuscation
problems

12 / 19

Algebraic Security (1/2)

Security Model:

1 random bits allowed

as in classic masking
model unpredictability
in WB impl. as
pseudorandom

2 Goal:
any f ∈ span{vi} is
unpredictable

3 isolated from obfuscation
problems

12 / 19

Algebraic Security (2/2)

Adversary:

1 chooses plaintext/key pairs

2 chooses f ∈ span{vi}
3 tries to predict values of

this function
(i.e. before random bits
are sampled)

4 succeeds,
if only f matches

13 / 19

Algebraic Security (2/2)

Adversary:

1 chooses plaintext/key pairs
2 chooses f ∈ span{vi}

3 tries to predict values of
this function
(i.e. before random bits
are sampled)

4 succeeds,
if only f matches

13 / 19

Algebraic Security (2/2)

Adversary:

1 chooses plaintext/key pairs
2 chooses f ∈ span{vi}
3 tries to predict values of

this function
(i.e. before random bits
are sampled)

4 succeeds,
if only f matches

13 / 19

Algebraic Security (2/2)

Adversary:

1 chooses plaintext/key pairs
2 chooses f ∈ span{vi}
3 tries to predict values of

this function
(i.e. before random bits
are sampled)

4 succeeds,
if only f matches

13 / 19

Algebraic Security (3/3)

Proposition

Let F = {f (x , ·, ·) | f (x , re , rc) ∈ span{vi}, x ∈ FN
2 }.

Let 𝜀 = maxf ∈F bias(f), e = − log2 (1/2 + 𝜀).
Then for any adversary 𝒜 choosing Q inputs

Adv[𝒜] ≤ min(2Q−|rc |, 2−eQ).

Corollary

Let k be a positive integer. Then for any adversary 𝒜

Adv[𝒜] ≤ 2−k if e > 0 and |rc | ≥ k · (1 +
1
e
).

Information-theoretic security

14 / 19

Algebraic Security (3/3)

Proposition

Let F = {f (x , ·, ·) | f (x , re , rc) ∈ span{vi}, x ∈ FN
2 }.

Let 𝜀 = maxf ∈F bias(f), e = − log2 (1/2 + 𝜀).
Then for any adversary 𝒜 choosing Q inputs

Adv[𝒜] ≤ min(2Q−|rc |, 2−eQ).

Corollary

Let k be a positive integer. Then for any adversary 𝒜

Adv[𝒜] ≤ 2−k if e > 0 and |rc | ≥ k · (1 +
1
e
).

Information-theoretic security

14 / 19

Algebraic Security (3/3)

Proposition

Let F = {f (x , ·, ·) | f (x , re , rc) ∈ span{vi}, x ∈ FN
2 }.

Let 𝜀 = maxf ∈F bias(f), e = − log2 (1/2 + 𝜀).
Then for any adversary 𝒜 choosing Q inputs

Adv[𝒜] ≤ min(2Q−|rc |, 2−eQ).

Corollary

Let k be a positive integer. Then for any adversary 𝒜

Adv[𝒜] ≤ 2−k if e > 0 and |rc | ≥ k · (1 +
1
e
).

Information-theoretic security
14 / 19

Minimalist Quadratic Masking Scheme (MQMS)

Masking scheme:

set of gadgets
provably secure
composition

quadratic decoder:
(a, b, c) ↦→ ab ⊕ c

first-order protection

function Decode(a, b, c)
return ab ⊕ c

function EvalXOR((a, b, c), (d, e, f), (ra, rb, rc), (rd , re , rf))
(a, b, c)← Refresh((a, b, c), (ra, rb, rc))
(d, e, f)← Refresh((d, e, f), (rd , re , rf))
x ← a ⊕ d
y ← b ⊕ e
z ← c ⊕ f ⊕ ae ⊕ bd
return (x, y, z)

function EvalAND((a, b, c), (d, e, f), (ra, rb, rc), (rd , re , rf))
(a, b, c)← Refresh((a, b, c), (ra, rb, rc))
(d, e, f)← Refresh((d, e, f), (rd , re , rf))
ma ← bf ⊕ rc e
md ← ce ⊕ rf b
x ← ae ⊕ rf
y ← bd ⊕ rc
z ← ama ⊕ dmd ⊕ rc rf ⊕ cf
return (x, y, z)

function Refresh((a, b, c), (ra, rb, rc))
ma ← ra · (b ⊕ rc)
mb ← rb · (a ⊕ rc)
rc ← ma ⊕ mb ⊕ (ra ⊕ rc)(rb ⊕ rc)⊕ rc
a← a ⊕ ra
b ← b ⊕ rb
c ← c ⊕ rc
return (a, b, c)

15 / 19

Minimalist Quadratic Masking Scheme (MQMS)

Masking scheme:

set of gadgets
provably secure
composition
quadratic decoder:
(a, b, c) ↦→ ab ⊕ c

first-order protection

function Decode(a, b, c)
return ab ⊕ c

function EvalXOR((a, b, c), (d, e, f), (ra, rb, rc), (rd , re , rf))
(a, b, c)← Refresh((a, b, c), (ra, rb, rc))
(d, e, f)← Refresh((d, e, f), (rd , re , rf))
x ← a ⊕ d
y ← b ⊕ e
z ← c ⊕ f ⊕ ae ⊕ bd
return (x, y, z)

function EvalAND((a, b, c), (d, e, f), (ra, rb, rc), (rd , re , rf))
(a, b, c)← Refresh((a, b, c), (ra, rb, rc))
(d, e, f)← Refresh((d, e, f), (rd , re , rf))
ma ← bf ⊕ rc e
md ← ce ⊕ rf b
x ← ae ⊕ rf
y ← bd ⊕ rc
z ← ama ⊕ dmd ⊕ rc rf ⊕ cf
return (x, y, z)

function Refresh((a, b, c), (ra, rb, rc))
ma ← ra · (b ⊕ rc)
mb ← rb · (a ⊕ rc)
rc ← ma ⊕ mb ⊕ (ra ⊕ rc)(rb ⊕ rc)⊕ rc
a← a ⊕ ra
b ← b ⊕ rb
c ← c ⊕ rc
return (a, b, c)

15 / 19

Minimalist Quadratic Masking Scheme (MQMS)

Masking scheme:

set of gadgets
provably secure
composition
quadratic decoder:
(a, b, c) ↦→ ab ⊕ c

first-order protection

function Decode(a, b, c)
return ab ⊕ c

function EvalXOR((a, b, c), (d, e, f), (ra, rb, rc), (rd , re , rf))
(a, b, c)← Refresh((a, b, c), (ra, rb, rc))
(d, e, f)← Refresh((d, e, f), (rd , re , rf))
x ← a ⊕ d
y ← b ⊕ e
z ← c ⊕ f ⊕ ae ⊕ bd
return (x, y, z)

function EvalAND((a, b, c), (d, e, f), (ra, rb, rc), (rd , re , rf))
(a, b, c)← Refresh((a, b, c), (ra, rb, rc))
(d, e, f)← Refresh((d, e, f), (rd , re , rf))
ma ← bf ⊕ rc e
md ← ce ⊕ rf b
x ← ae ⊕ rf
y ← bd ⊕ rc
z ← ama ⊕ dmd ⊕ rc rf ⊕ cf
return (x, y, z)

function Refresh((a, b, c), (ra, rb, rc))
ma ← ra · (b ⊕ rc)
mb ← rb · (a ⊕ rc)
rc ← ma ⊕ mb ⊕ (ra ⊕ rc)(rb ⊕ rc)⊕ rc
a← a ⊕ ra
b ← b ⊕ rb
c ← c ⊕ rc
return (a, b, c)

15 / 19

MQMS Security

Security:

1 algorithm to verify
that bias ̸= 1/2

2 max. degree on r : 4

⇒ bias ≤ 7/16

for 80-bit security
we need |rc | ≥ 940

function Decode(a, b, c)
return ab ⊕ c

function EvalXOR((a, b, c), (d, e, f), (ra, rb, rc), (rd , re , rf))
(a, b, c)← Refresh((a, b, c), (ra, rb, rc))
(d, e, f)← Refresh((d, e, f), (rd , re , rf))
x ← a ⊕ d
y ← b ⊕ e
z ← c ⊕ f ⊕ ae ⊕ bd
return (x, y, z)

function EvalAND((a, b, c), (d, e, f), (ra, rb, rc), (rd , re , rf))
(a, b, c)← Refresh((a, b, c), (ra, rb, rc))
(d, e, f)← Refresh((d, e, f), (rd , re , rf))
ma ← bf ⊕ rc e
md ← ce ⊕ rf b
x ← ae ⊕ rf
y ← bd ⊕ rc
z ← ama ⊕ dmd ⊕ rc rf ⊕ cf
return (x, y, z)

function Refresh((a, b, c), (ra, rb, rc))
ma ← ra · (b ⊕ rc)
mb ← rb · (a ⊕ rc)
rc ← ma ⊕ mb ⊕ (ra ⊕ rc)(rb ⊕ rc)⊕ rc
a← a ⊕ ra
b ← b ⊕ rb
c ← c ⊕ rc
return (a, b, c)

16 / 19

MQMS Security

Security:

1 algorithm to verify
that bias ̸= 1/2

2 max. degree on r : 4

⇒ bias ≤ 7/16

for 80-bit security
we need |rc | ≥ 940

function Decode(a, b, c)
return ab ⊕ c

function EvalXOR((a, b, c), (d, e, f), (ra, rb, rc), (rd , re , rf))
(a, b, c)← Refresh((a, b, c), (ra, rb, rc))
(d, e, f)← Refresh((d, e, f), (rd , re , rf))
x ← a ⊕ d
y ← b ⊕ e
z ← c ⊕ f ⊕ ae ⊕ bd
return (x, y, z)

function EvalAND((a, b, c), (d, e, f), (ra, rb, rc), (rd , re , rf))
(a, b, c)← Refresh((a, b, c), (ra, rb, rc))
(d, e, f)← Refresh((d, e, f), (rd , re , rf))
ma ← bf ⊕ rc e
md ← ce ⊕ rf b
x ← ae ⊕ rf
y ← bd ⊕ rc
z ← ama ⊕ dmd ⊕ rc rf ⊕ cf
return (x, y, z)

function Refresh((a, b, c), (ra, rb, rc))
ma ← ra · (b ⊕ rc)
mb ← rb · (a ⊕ rc)
rc ← ma ⊕ mb ⊕ (ra ⊕ rc)(rb ⊕ rc)⊕ rc
a← a ⊕ ra
b ← b ⊕ rb
c ← c ⊕ rc
return (a, b, c)

16 / 19

Implementation

Proof-of-concept masked AES-128

1 MQMS + 1-st order Boolean masking
2 31,783 → 2,588,743 gates expansion (x81)
3 16 Mb code / 1 Kb RAM / 0.05s per block on a laptop
4 (unoptimized)

github.com/cryptolu/whitebox

17 / 19

https://github.com/cryptolu/whitebox

Conclusions

Conclusions:
1 new attack methods ⇒ new constraints on a white-box impl.
2 new results on provable security for white-box model
3 new links with side-channel research

Open problems and future work:

1 structure-hiding component
2 higher-order protection
3 analysis of LPN-based attacks
4 deeper study of the fault attacks
5 optimizations

18 / 19

Conclusions

Conclusions:
1 new attack methods ⇒ new constraints on a white-box impl.
2 new results on provable security for white-box model
3 new links with side-channel research

Open problems and future work:

1 structure-hiding component
2 higher-order protection
3 analysis of LPN-based attacks
4 deeper study of the fault attacks
5 optimizations

18 / 19

The End

ePrint 2018/049

github.com/cryptolu/whitebox

Thank you!

19 / 19

https://eprint.iacr.org/2018/049
https://github.com/cryptolu/whitebox

	Introduction
	Attacks on Masked White-box Implementations
	Countermeasures
	Algebraic Security

