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High-level Overview

m SIDH/SIKE are isogeny-based PQ protocols

m Rely on hardness of finding isogenies between elliptic curves
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= low-memory van Oorschot-Wiener (vOW)
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High-level Overview

62
m SIDH/SIKE are isogeny-based PQ protocols | 1 e
m Rely on hardness of finding isogenies between elliptic curves % %
m (Previously) Best attacks: generic claw finding (meet-in-the-middle)”/" — 5, — #/4 2
m Physical memory constraints (size x speed) =g =
= low-memory van Oorschot-Wiener (vVOW) =5 =
m this work: revisiting and optimizing the MitM approach % E.':: .

m Proof-of-concept: breaking $IKEp182 challenge (by Microsoft)
en—ataptep-on—a—weekend on an HPC cluster in a week

(9 core-years)
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Outdated? Is MitM useless?
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Comparison to the Castryck-Decru Attack (castryck and Decru 2022)

Outdated? Is MitM useless? @

m Castryck-Decru attack relies on the torsion point images
m MitM is more generally applicable (existing + future schemes)

m Generic attack in the generic setting may still be relevant for security analysis
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Introduction

Meet-in-the-Middle Isogeny Search
Computing a SIKE-tree
Intersecting two SIKE-trees
Application to $IKEp182

I[@ Conclusion
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m Public parameters:
prime p with p+ 1 = 2¢43%8
starting curve E with 2%4- and 3°B-torsion bases

Figure credits: TikZ for Cryptographers
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SIDH /SIKE

m Public parameters:

prime p with p+ 1 = 2¢43%8

starting curve E with 2%4- and 3°8-torsion bases
m Alice:

computes a secret 2% isogeny ¢4 : E— E/ (A)
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prime p with p+ 1 = 2¢43%8

starting curve E with 2%4- and 3°8-torsion bases
m Alice:

computes a secret 2% isogeny ¢4 : E— E/ (A)
publishes E4 with the 3°8-torsion image on it
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SIDH /SIKE

m Public parameters:

prime p with p+ 1 = 2¢43%8 DA
starting curve E with 2%4- and 3°8-torsion bases E E/<A>
m Alice:
computes a secret 2% isogeny ¢4 : E— E/ (A) ¢B '
publishes E4 with the 3°8-torsion image on it
" Bob | E/(B) —— E/{A,B)
computes a secret 3% isogeny ¢g: E— E/ (B) o

publishes Eg with the 2°A-torsion image on it

m Alice and Bob then reapply their secret isogenies on the published curves and
arrive at the same shared secret E/ (A, B)
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SIDH /SIKE

m Public parameters:

prime p with p+ 1 = 2¢43%8 DA
starting curve E with 2%4- and 3°8-torsion bases E E/<A>
m Alice:
computes a secret 2% isogeny ¢4 : E— E/ (A) ¢B '
publishes E4 with the 3°8-torsion image on it
" Bob | E/(B) —— E/{A,B)
computes a secret 3% isogeny ¢g: E— E/ (B) 'y

publishes Eg with the 2°A-torsion image on it

m Alice and Bob then reapply their secret isogenies on the published curves and
arrive at the same shared secret E/ (A, B)

This work: recovering the 2%-isogeny ¢4 : E— E/ (A), given only E and E4 = E/ (A)
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m Montgomery curves: Ep : y* = x* + Ax* + x defined over F

m Efficient x-only arithmetic
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SIDH/SIKE Arithmetic
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SIDH/SIKE Arithmetic

Montgomery curves: Ej4 : y* = x> + Ax> + x defined over F 2

Efficient x-only arithmetic

A 2%4-isogeny decomposes into e4 2-isogenies ¢;: Ea,_, — Ea;:

DAlice = Pep © ... 0 P1

2-isogeny ¢;: Ea, |, — Ea;:
m requires the x-coordinate k of an order-2 point on E (the kernel gen.), x# 0
m evaluate: ¢;(x) = %
m next curve: A; =2 — 4k3
m The 2-kernels can be derived from the 2°A-kernel of ¢ajice by pushing through ¢;
and raising to appropriate power [26A~17]
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High-level MitM (Galbraith 1999; Adj et al. 2019)
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m Goal:

LeftTree = {j(Ea/(P+[5Q)) | s & [0,2]}

SOLLAD0L

6/15



SIKE: Right Tree

RightTree = {{(Er/(P + Q) | s € [0,2%4/%]}

ot

O
m Optimized arithmetic formulas leak 2 last steps 8>
(Costello et al. 2020) O0—0 .

m We express the right tree in the same shape as 8:
the left tree O—

m Let Oe—_
=280 o— "
C+2 O—0

m Goal: 8:

o—

O—
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Recursive Generation (MitM-DFS (aqj et al. 2019))

m Goal:
Tree — {j(E/<P+ [s}Q>) ’56 [0,2€A/2]}

m DFS visit tree (recursively)
m need 2-kernel points
m maintain 2%~ '-torsion, by pushing it through
isogenies and updating accordingly
m We adapt the idea to SIKE's optimized
arithmetic (e.g., ensure x # 0)

m We adapt optimal strategy for trade-off
between doublings and isogeny evaluations

SOLL A0 L
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Optimal Strategy for Doubling-Isogeny Trade-off
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Optimal Strategy for Doubling-Isogeny Trade-off
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Optimal Strategy for Doubling-Isogeny Trade-off
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Sort-and-Merge

m Standard MitM: hash-table (left tree), lookups (right tree)
m O(N) insertions/lookups
m “Optimal” if O(1) random memory access
m Physically impossible on large scale
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Sort-and-Merge

m Standard MitM: hash-table (left tree), lookups (right tree)
m O(N) insertions/lookups
m “Optimal” if O(1) random memory access
m Physically impossible on large scale

m Sort-and-Merge

O(Nlog N) comparisons/swaps

Mostly sequential/local access possible

The constant behind log N is small in practice (e.g. radix sort)

(Adj et al. 2019) considered 2D-mesh sorting as physically optimal. However, it is not
clear at which scale the physical limits start to apply.

Although we use only 24° storage, the limit of that paper set to 280 seems not that
far to actually reach physical limitations.
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Extreme Storage Minimization

Drop path information

Truncate j-invariants
Example: two 2%4-sized trees, truncated to 64 bits
= 24264 = 924 collisions (false positives)
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Extreme Storage Minimization

Drop path information

Truncate j-invariants
Example: two 2%4-sized trees, truncated to 64 bits
= 24264 = 924 collisions (false positives)

Stage 1: Find intersection between truncated j-invariants (truncated collisions)
Stage 2: Regenerate trees and check full j-invariants matching truncated collisions

Sorted & dense sets can be compressed by storing successive differences
Example: 2% elements of 64 bits have average difference 22 (64 — 20 bits
compression)

In $IKEp182, at least x5 — 6 compression rate (vs 44-bit path + 64-bit j-invariant part)
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Application to $IKEp182 (1/2)

$1KEp182 challenge:
m p=2%13" 1 (182 bits); es =91,eg =57

m 91 steps split: 45 (left tree) + 44 (right tree) + 2 (A leakage)

m Conjugation trick (Costello et al. 2020): left tree size 244

244

m MitM: compute and intersect two sets of J-invariants
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Application to $IKEp182 (2/2)

Process:

Tree-DFS (Stage 1): 4.2 core-years and 256 TiB disk space (unoptimized, 70+
TiB should be enough)
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Merge-2: 512 GiB chunks — 2 TiB compressed chunks (8 to 1); 0.08 core-years
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parallelization; 0.77 core-years
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Process:

Tree-DFS (Stage 1): 4.2 core-years and 256 TiB disk space (unoptimized, 70+
TiB should be enough)

Sorting: sort 2 GiB chunks / core locally
Merge-1: 2 GiB chunks — 512 GiB chunks (256 to 1); 0.15 core-years
Merge-2: 512 GiB chunks — 2 TiB compressed chunks (8 to 1); 0.08 core-years

Sieve-3: intersect groups of 4x4 chunks (each tree) (8 TiB x 8 TiB),
parallelization; 0.77 core-years
Found 16 777 119 out of 16 777 216 expected collisions

@ Tree-DFS (Stage 2): 4.2 core-years to find matching j-invariants and paths
Total: 9.5 core-years and 256 TiB (70+ TiB should be enough)
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Conclusion

m Optimizations for MitM-based isogeny search
m Useful generic tool: sort-and-merge intersection of large sets of 64-bit elements

m The paper contains discussion on scalability of the approach

ia.cr/2021/1421 github.com/cryptolu/sike_mitm
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Conclusion

m Optimizations for MitM-based isogeny search
m Useful generic tool: sort-and-merge intersection of large sets of 64-bit elements

m The paper contains discussion on scalability of the approach
reuse of the 89-bit path search does not improve vOW-based estimations
using more RAM (e.g. 28°) requires design and analysis of the architecture

(2D-mesh may be too pessimistic)
$IKEp217 challenge requires 1M more computations (same storage), ~ 1 HPC-year

ia.cr/2021/1421 github.com/cryptolu/sike_mitm
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Conclusion

m Optimizations for MitM-based isogeny search

m Useful generic tool: sort-and-merge intersection of large sets of 64-bit elements

m The paper contains discussion on scalability of the approach
reuse of the 89-bit path search does not improve vOW-based estimations
using more RAM (e.g. 28°) requires design and analysis of the architecture
(2D-mesh may be too pessimistic)

ia.cr/2021/1421 github.com/cryptolu/sike_mitm

!Actually, a few laptop-seconds, see optimized implementation by (Oudompheng and Pope 2022)
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Comparison of HashTable and SortMerge on a PC

Performance comparison between FastHash and SortMerge
over 64-bit integer arrays of total size 2L
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Intersecting two arrays without ) ) .
. Lookup in an array with precomputation
precomputation 15/15
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