UNIVERSITE DU
LUXEMBOURG

Aleksei Udovenko®?, Giuseppe Vitto?

1CryptoExperts
2SnT, University of Luxembourg

Selected Areas in Cryptography 2022
25t August 2022

S "T I:I Luxembourg National CRrRYPTO o

Research Fund p— O
securityandtrust.lu C Xpe RT S

https://www.sac2022.ca/

High-level Overview

m SIDH/SIKE are isogeny-based PQ protocols

m Rely on hardness of finding isogenies between elliptic curves

L
‘(’B

E/(A, B)

m (Previously) Best attacks: generic claw finding (meet-in-the-middle)” " ~;

m Physical memory constraints (size x speed)
= low-memory van Oorschot-Wiener (vOW)

1/15

High-level Overview

E LE/M)

L
‘(’B

E/(A, B)

SIDH/SIKE are isogeny-based PQ protocols

Rely on hardness of finding isogenies between elliptic curves

]

(Previously) Best attacks: generic claw finding (meet-in-the-middle)”"” ~,

Physical memory constraints (size x speed)
= low-memory van Oorschot-Wiener (vOW)

TETTTTT

LAAALALA

m this work: revisiting and optimizing the MitM approach

1/15

High-level Overview

62
m SIDH/SIKE are isogeny-based PQ protocols | 1 e
m Rely on hardness of finding isogenies between elliptic curves % %
m (Previously) Best attacks: generic claw finding (meet-in-the-middle)”/" — 5, — #/4 2
m Physical memory constraints (size x speed) =g =
= low-memory van Oorschot-Wiener (vVOW) =5 =
m this work: revisiting and optimizing the MitM approach % E.':: .

m Proof-of-concept: breaking $IKEp182 challenge (by Microsoft)
en—ataptep-on—a—weekend on an HPC cluster in a week

(9 core-years)

1/15

Outdated? Is MitM useless?

2/15

Comparison to the Castryck-Decru Attack (castryck and Decru 2022)

Outdated? Is MitM useless? @

m Castryck-Decru attack relies on the torsion point images
m MitM is more generally applicable (existing + future schemes)

m Generic attack in the generic setting may still be relevant for security analysis

2/15

Introduction

Meet-in-the-Middle Isogeny Search
Computing a SIKE-tree
Intersecting two SIKE-trees
Application to $IKEp182

I[@ Conclusion

2/15

m Public parameters:
prime p with p+ 1 = 2¢43%8
starting curve E with 2%4- and 3°B-torsion bases

Figure credits: TikZ for Cryptographers

E— g
»B '
E/(B) — E/(A,B)

D'y

3/15

https://www.iacr.org/authors/tikz/

SIDH /SIKE

m Public parameters:

prime p with p+ 1 = 2¢43%8

starting curve E with 2%4- and 3°8-torsion bases
m Alice:

computes a secret 2% isogeny ¢4 : E— E/ (A)
publishes E4 with the 3°8-torsion image on it

Figure credits: TikZ for Cryptographers

E— pia
¢B '
E/(B) — E/(A, B)

Pa

3/15

https://www.iacr.org/authors/tikz/

SIDH/SIKE

m Public parameters:

prime p with p+ 1 = 2¢43%8

starting curve E with 2%4- and 3°8-torsion bases
m Alice:

computes a secret 2% isogeny ¢4 : E— E/ (A)
publishes E4 with the 3°8-torsion image on it

m Bob:

computes a secret 3% isogeny ¢g: E— E/ (B)
publishes Eg with the 2°A-torsion image on it

Figure credits: TikZ for Cryptographers

E b4 E/(A)
¢B '
E/(B) — E/(A, B)

D'y

3/15

https://www.iacr.org/authors/tikz/

SIDH /SIKE

m Public parameters:

prime p with p+ 1 = 2¢43%8 DA
starting curve E with 2%4- and 3°8-torsion bases E E/<A>
m Alice:
computes a secret 2% isogeny ¢4 : E— E/ (A) ¢B '
publishes E4 with the 3°8-torsion image on it
" Bob | E/(B) —— E/{A,B)
computes a secret 3% isogeny ¢g: E— E/ (B) o

publishes Eg with the 2°A-torsion image on it

m Alice and Bob then reapply their secret isogenies on the published curves and
arrive at the same shared secret E/ (A, B)

Figure credits: TikZ for Cryptographers 315

https://www.iacr.org/authors/tikz/

SIDH /SIKE

m Public parameters:

prime p with p+ 1 = 2¢43%8 DA
starting curve E with 2%4- and 3°8-torsion bases E E/<A>
m Alice:
computes a secret 2% isogeny ¢4 : E— E/ (A) ¢B '
publishes E4 with the 3°8-torsion image on it
" Bob | E/(B) —— E/{A,B)
computes a secret 3% isogeny ¢g: E— E/ (B) 'y

publishes Eg with the 2°A-torsion image on it

m Alice and Bob then reapply their secret isogenies on the published curves and
arrive at the same shared secret E/ (A, B)

This work: recovering the 2%-isogeny ¢4 : E— E/ (A), given only E and E4 = E/ (A)

3/15

m Montgomery curves: Ep : y* = x* + Ax* + x defined over F

m Efficient x-only arithmetic

4/15

SIDH/SIKE Arithmetic

m Montgomery curves: Ea : y* = x> + Ax* + x defined over F
m Efficient x-only arithmetic

m A 2%4-isogeny decomposes into e 2-isogenies ¢;: E4,_, — Ea;:

DAlice = Pep © ... 0 P1

4/15

SIDH/SIKE Arithmetic

m Montgomery curves: Ea : y* = x> + Ax* + x defined over F
m Efficient x-only arithmetic

m A 2%4-isogeny decomposes into e 2-isogenies ¢;: E4,_, — Ea;:

DAlice = Pep © ... 0 P1

m 2-isogeny ¢;: Ea, | — Enp;:
m requires the x-coordinate k of an order-2 point on E (the kernel gen.), x# 0

e kx—1

m evaluate: ¢;(x) = %

m next curve: A; =2 — 4k3

4/15

SIDH/SIKE Arithmetic

Montgomery curves: Ej4 : y* = x> + Ax> + x defined over F 2

Efficient x-only arithmetic

A 2%4-isogeny decomposes into e4 2-isogenies ¢;: Ea,_, — Ea;:

DAlice = Pep © ... 0 P1

2-isogeny ¢;: Ea, |, — Ea;:
m requires the x-coordinate k of an order-2 point on E (the kernel gen.), x# 0
m evaluate: ¢;(x) = %
m next curve: A; =2 — 4k3
m The 2-kernels can be derived from the 2°A-kernel of ¢ajice by pushing through ¢;
and raising to appropriate power [26A~17]

4/15

Introduction

Meet-in-the-Middle Isogeny Search
Computing a SIKE-tree
Intersecting two SIKE-trees
Application to $IKEp182

I[@ Conclusion

4/15

High-level MitM (Galbraith 1999; Adj et al. 2019)

LALAARLA
TETTTTY

5/15

m Goal:

LeftTree = {j(Ea/(P+[5Q)) | s & [0,2]}

SOLLAD0L

6/15

SIKE: Right Tree

RightTree = {{(Er/(P + Q) | s € [0,2%4/%]}

ot

O
m Optimized arithmetic formulas leak 2 last steps 8>
(Costello et al. 2020) O0—0 .

m We express the right tree in the same shape as 8:
the left tree O—

m Let Oe—_
=280 o— "
C+2 O—0

m Goal: 8:

o—

O—

7/15

Introduction

Meet-in-the-Middle Isogeny Search
Computing a SIKE-tree
Intersecting two SIKE-trees
Application to $IKEp182

I[@ Conclusion

7/15

Recursive Generation (MitM-DFS (aqj et al. 2019))

m Goal:
Tree — {j(E/<P+ [s}Q>) ’56 [0,2€A/2]}

m DFS visit tree (recursively)
m need 2-kernel points
m maintain 2%~ '-torsion, by pushing it through
isogenies and updating accordingly
m We adapt the idea to SIKE's optimized
arithmetic (e.g., ensure x # 0)

m We adapt optimal strategy for trade-off
between doublings and isogeny evaluations

SOLL A0 L

8/15

Optimal Strategy for Doubling-Isogeny Trade-off

Ky
/.\
~ 9o
[Ko) S Iy
// \\ O // \\¢1
2 /. g \ /. g \
[ClEop K,
7 N ¢0 7 N\ ¢1 7 \\¢2
//é \\ //'6 \\ //'[E] \
[Eg]KO/.\’ ¥ ‘/o\’ “ ‘/o\’ fo\K3
// \\¢0 /[/f] \\(Z51 // \\¢2 /[é] \\¢3
(Ko T W WKy
///\\\(bo ,//\\\le // \\¢2 // \\¢3 // \\
/ [»g] N /[Z] \ ’ [‘g \ 7 [g] N / [6] (\254
4 W2 AW 4 AW 4 A W4 4
[] [] [] [] o

Ko (K, [y [P]Ks [0K: Ky

a0

9/15

Optimal Strategy for Doubling-Isogeny Trade-off

Ko
A <
[fq-l(}).\ 5 /<ZKT1
“Poo ?1
[62]K00A \‘o}/.m \o K2
\\ﬂﬁo ///\\¢1/%
[83]Ko./m x.ij“ f] K
1K, /ﬂ o S \1A1 /[M

[£5]K0 [54]K1 [63 Kz 52 K3 [Ks

[e*

9/15

Optimal Strategy for Doubling-Isogeny Trade-off

PK, £4 Kl [63 K2 62 K3 [£]K4 K-

9/15

Optimal Strategy for Doubling-Isogeny Trade-off

KQ x2
®o
ul \
K()'/i < 2
N do X
[EQ]Ko.ﬁ 4» A ¢
. b

/’\ d)O ///' \\(Zsl /"\\\(ZSQ /,:'yi
/m 'fé N },'V
'o{ “N¢o ' /@%
4 e

</53
[£°] Ko [64]K1 B, [PKs [0Kq

A\

'><2
£y
4

Ks

9/15

Optimal Strategy for Doubling-Isogeny Trade-off

IR/

\\\¢0 ///\\\ /.Vi
[63][{ ‘/f] \.}/‘w \‘. ‘1] K
\\ 0 //\\q51 \\\2 // o
/ ¢ R /m ’ MY

[0°] Ko £4K1 [€3K2 €2K3 [4 K;

9/15

Optimal Strategy for Doubling-Isogeny Trade-off

PK, £4 Kl [63 K2 62 K3 [£]K4 K-

9/15

Introduction

Meet-in-the-Middle Isogeny Search
Computing a SIKE-tree
Intersecting two SIKE-trees
Application to $IKEp182

I[@ Conclusion

9/15

Sort-and-Merge

m Standard MitM: hash-table (left tree), lookups (right tree)
m O(N) insertions/lookups
m “Optimal” if O(1) random memory access
m Physically impossible on large scale

10/15

Sort-and-Merge

m Standard MitM: hash-table (left tree), lookups (right tree)
m O(N) insertions/lookups
m “Optimal” if O(1) random memory access
m Physically impossible on large scale

m Sort-and-Merge
m O(Nlog N) comparisons/swaps
m Mostly sequential/local access possible
m The constant behind log N is small in practice (e.g. radix sort)

10/15

Sort-and-Merge

m Standard MitM: hash-table (left tree), lookups (right tree)
m O(N) insertions/lookups
m “Optimal” if O(1) random memory access
m Physically impossible on large scale

m Sort-and-Merge

O(Nlog N) comparisons/swaps

Mostly sequential/local access possible

The constant behind log N is small in practice (e.g. radix sort)

(Adj et al. 2019) considered 2D-mesh sorting as physically optimal. However, it is not
clear at which scale the physical limits start to apply.

Although we use only 24° storage, the limit of that paper set to 280 seems not that
far to actually reach physical limitations.

10/15

Extreme Storage Minimization

Drop path information

Truncate j-invariants
Example: two 2%4-sized trees, truncated to 64 bits
= 24264 = 924 collisions (false positives)

11/15

Extreme Storage Minimization

Drop path information

Truncate j-invariants
Example: two 2%4-sized trees, truncated to 64 bits
= 24264 = 924 collisions (false positives)

Stage 1: Find intersection between truncated j-invariants (truncated collisions)
Stage 2: Regenerate trees and check full j-invariants matching truncated collisions

11/15

Extreme Storage Minimization

Drop path information

Truncate j-invariants
Example: two 2%4-sized trees, truncated to 64 bits
= 24264 = 924 collisions (false positives)

Stage 1: Find intersection between truncated j-invariants (truncated collisions)
Stage 2: Regenerate trees and check full j-invariants matching truncated collisions

Sorted & dense sets can be compressed by storing successive differences
Example: 2% elements of 64 bits have average difference 22 (64 — 20 bits
compression)

11/15

Extreme Storage Minimization

Drop path information

Truncate j-invariants
Example: two 2%4-sized trees, truncated to 64 bits
= 24264 = 924 collisions (false positives)

Stage 1: Find intersection between truncated j-invariants (truncated collisions)
Stage 2: Regenerate trees and check full j-invariants matching truncated collisions

Sorted & dense sets can be compressed by storing successive differences
Example: 2% elements of 64 bits have average difference 22 (64 — 20 bits
compression)

In $IKEp182, at least x5 — 6 compression rate (vs 44-bit path + 64-bit j-invariant part)

11/15

Introduction

Meet-in-the-Middle Isogeny Search
Computing a SIKE-tree
Intersecting two SIKE-trees
Application to $IKEp182

I[@ Conclusion

11/15

Application to $IKEp182 (1/2)

$1KEp182 challenge:
m p=2%13" 1 (182 bits); es =91,eg =57

m 91 steps split: 45 (left tree) + 44 (right tree) + 2 (A leakage)

m Conjugation trick (Costello et al. 2020): left tree size 244

244

m MitM: compute and intersect two sets of J-invariants

12/15

Application to $IKEp182 (2/2)

Process:

Tree-DFS (Stage 1): 4.2 core-years and 256 TiB disk space (unoptimized, 70+
TiB should be enough)

13/15

Application to $IKEp182 (2/2)

Process:

Tree-DFS (Stage 1): 4.2 core-years and 256 TiB disk space (unoptimized, 70+
TiB should be enough)

Sorting: sort 2 GiB chunks / core locally

13/15

Application to $IKEp182 (2/2)

Process:

Tree-DFS (Stage 1): 4.2 core-years and 256 TiB disk space (unoptimized, 70+
TiB should be enough)

Sorting: sort 2 GiB chunks / core locally
Merge-1: 2 GiB chunks — 512 GiB chunks (256 to 1); 0.15 core-years

13/15

Application to $IKEp182 (2/2)

Process:

Tree-DFS (Stage 1): 4.2 core-years and 256 TiB disk space (unoptimized, 70+
TiB should be enough)

Sorting: sort 2 GiB chunks / core locally
Merge-1: 2 GiB chunks — 512 GiB chunks (256 to 1); 0.15 core-years
Merge-2: 512 GiB chunks — 2 TiB compressed chunks (8 to 1); 0.08 core-years

13/15

Application to $IKEp182 (2/2)

Process:

Tree-DFS (Stage 1): 4.2 core-years and 256 TiB disk space (unoptimized, 70+
TiB should be enough)

Sorting: sort 2 GiB chunks / core locally
Merge-1: 2 GiB chunks — 512 GiB chunks (256 to 1); 0.15 core-years
Merge-2: 512 GiB chunks — 2 TiB compressed chunks (8 to 1); 0.08 core-years

Sieve-3: intersect groups of 4x4 chunks (each tree) (8 TiB x 8 TiB),
parallelization; 0.77 core-years
Found 16 777 119 out of 16 777 216 expected collisions

13/15

Application to $IKEp182 (2/2)

Process:

Tree-DFS (Stage 1): 4.2 core-years and 256 TiB disk space (unoptimized, 70+
TiB should be enough)

Sorting: sort 2 GiB chunks / core locally
Merge-1: 2 GiB chunks — 512 GiB chunks (256 to 1); 0.15 core-years
Merge-2: 512 GiB chunks — 2 TiB compressed chunks (8 to 1); 0.08 core-years

Sieve-3: intersect groups of 4x4 chunks (each tree) (8 TiB x 8 TiB),
parallelization; 0.77 core-years
Found 16 777 119 out of 16 777 216 expected collisions

@ Tree-DFS (Stage 2): 4.2 core-years to find matching j-invariants and paths

13/15

Application to $IKEp182 (2/2)

Process:

Tree-DFS (Stage 1): 4.2 core-years and 256 TiB disk space (unoptimized, 70+
TiB should be enough)

Sorting: sort 2 GiB chunks / core locally
Merge-1: 2 GiB chunks — 512 GiB chunks (256 to 1); 0.15 core-years
Merge-2: 512 GiB chunks — 2 TiB compressed chunks (8 to 1); 0.08 core-years

Sieve-3: intersect groups of 4x4 chunks (each tree) (8 TiB x 8 TiB),
parallelization; 0.77 core-years
Found 16 777 119 out of 16 777 216 expected collisions

@ Tree-DFS (Stage 2): 4.2 core-years to find matching j-invariants and paths
Total: 9.5 core-years and 256 TiB (70+ TiB should be enough)

13/15

Introduction

Meet-in-the-Middle Isogeny Search
Computing a SIKE-tree
Intersecting two SIKE-trees
Application to $IKEp182

Conclusion

13/15

Conclusion

m Optimizations for MitM-based isogeny search
m Useful generic tool: sort-and-merge intersection of large sets of 64-bit elements

m The paper contains discussion on scalability of the approach

ia.cr/2021/1421 github.com/cryptolu/sike_mitm

14/15

https://ia.cr/2021/1421
https://github.com/cryptolu/SIKE_MitM

Conclusion

m Optimizations for MitM-based isogeny search
m Useful generic tool: sort-and-merge intersection of large sets of 64-bit elements

m The paper contains discussion on scalability of the approach

reuse of the 89-bit path search does not improve vOW-based estimations
using more RAM (e.g. 28°) requires design and analysis of the architecture
(2D-mesh may be too pessimistic)

ia.cr/2021/1421 github.com/cryptolu/sike_mitm

14/15

https://ia.cr/2021/1421
https://github.com/cryptolu/SIKE_MitM

Conclusion

m Optimizations for MitM-based isogeny search
m Useful generic tool: sort-and-merge intersection of large sets of 64-bit elements

m The paper contains discussion on scalability of the approach
reuse of the 89-bit path search does not improve vOW-based estimations
using more RAM (e.g. 28°) requires design and analysis of the architecture

(2D-mesh may be too pessimistic)
$IKEp217 challenge requires 1M more computations (same storage), ~ 1 HPC-year

ia.cr/2021/1421 github.com/cryptolu/sike_mitm

14/15

https://ia.cr/2021/1421
https://github.com/cryptolu/SIKE_MitM

Conclusion

m Optimizations for MitM-based isogeny search

m Useful generic tool: sort-and-merge intersection of large sets of 64-bit elements

m The paper contains discussion on scalability of the approach
reuse of the 89-bit path search does not improve vOW-based estimations
using more RAM (e.g. 28°) requires design and analysis of the architecture
(2D-mesh may be too pessimistic)

ia.cr/2021/1421 github.com/cryptolu/sike_mitm

!Actually, a few laptop-seconds, see optimized implementation by (Oudompheng and Pope 2022)
14/15

https://ia.cr/2021/1421
https://github.com/cryptolu/SIKE_MitM

References |

Adj, Gora et al. (Aug. 2019). “On the Cost of Computing Isogenies Between
Supersingular Elliptic Curves”. In: SAC 2018. Ed. by Carlos Cid and
Michael J. Jacobson Jr: vol. 11349. LNCS. Springer, Heidelberg, pp. 322-343. DoOTI:
10.1007/978-3-030-10970-7_15.

Castryck, Wouter and Thomas Decru (2022). An efficient key recovery attack on SIDH
(preliminary version). Cryptology ePrint Archive, Paper 2022/975.
https://eprint.iacr.org/2022/975.

Costello, Craig et al. (May 2020). “Improved Classical Cryptanalysis of SIKE in
Practice”. In: PKC 2020, Part II. Ed. by Aggelos Kiayias et al. Vol. 12111. LNCS.
Springer, Heidelberg, pp. 505-534. DOI: 10.1007/978-3-030-45388-6_18.

Galbraith, Steven D. (1999). “Constructing Isogenies between Elliptic Curves Over
Finite Fields". In: LMS Journal of Computation and Mathematics 2, pp. 118-138.

14/15

https://doi.org/10.1007/978-3-030-10970-7_15
https://eprint.iacr.org/2022/975
https://doi.org/10.1007/978-3-030-45388-6_18

Oudompheng, Rémy and Giacomo Pope (2022). SageMath implementation of the
Castryck-Decru Attack on SIDH.
https://github.com/jack4818/Castryck-Decru-SageMath.

14 /15

https://github.com/jack4818/Castryck-Decru-SageMath

Comparison of HashTable and SortMerge on a PC

Performance comparison between FastHash and SortMerge
over 64-bit integer arrays of total size 2L

X FastHash insert +}0QkuP --- ratio [5-5
A sort(x2) 4 mergd 0101 x FastHash lookup ,~=~< --- ratio |45
0.1754 S
r5.0 ® merge ____- \|
A sort +/nerge [l
@ 0.150 ta4.5 / \ 4.0
b 0.08 !
) LN
5 o ° I
gouzs “ 5 , 35
e @ !
g t3.5 € 0.06 !
£ 0.100 ’ S I
£ £ ! 3.0
2 F3.0 £ !
3 0.075 g !
£ t2.5 5 004 25
0.050 £
t2.0
2.0
J 0.02
0.025 l1s
1.5
10 15 20 25 30
L (log; of array size) 10 15 20 25 30

L (log; of array size)

Intersecting two arrays without)) .
. Lookup in an array with precomputation
precomputation 15/15

	Introduction
	Meet-in-the-Middle Isogeny Search
	Computing a SIKE-tree
	Intersecting two SIKE-trees
	Application to $IKEp182
	Conclusion
	Extra
	References

