
Meet-in-the-Filter and Dynamic Counting
with Applications to Speck

Alex Biryukov1, Luan Cardoso dos Santos1, Je Sen Teh1,2,
Aleksei Udovenko1, Vesselin Velichkov3,

1 SnT, University of Luxembourg
2 University Sains Malaysia
3 University of Edinburgh

Applied Cryptography and Network Security 2023
19th June 2023

https://sulab-sever.u-aizu.ac.jp/acns2023/

Plan

1 Problem statement

2 Meet-in-The-Filter

3 Application to Speck32

4 Conclusions

0 / 14

Symmetric-key Encryption

m

k

c

1 / 14

Symmetric-key Encryption

Speckm

k

c

1 / 14

Differential Cryptanalysis

∆IN
r rounds

differential
∆OUT

How to find key candidates efficiently?

2 / 14

Differential Cryptanalysis

∆IN
r rounds

differential
∆OUT

k rounds

key recovery
∆C , C1, C2

How to find key candidates efficiently?

2 / 14

Differential Cryptanalysis

∆IN
r rounds

differential
∆OUT

k rounds

key recovery
∆C , C1, C2

How to find key candidates efficiently?

2 / 14

Plan

1 Problem statement

2 Meet-in-The-Filter

3 Application to Speck32

4 Conclusions

2 / 14

High-level idea

Two-step process:
1 compute most probable trails ΔOUT → ΔC

2 run trail-assisted key recovery

Motivation: alternative to Neural distinguishers (Gohr 2019)

3 / 14

High-level idea

Two-step process:
1 compute most probable trails ΔOUT → ΔC

2 run trail-assisted key recovery

Motivation: alternative to Neural distinguishers (Gohr 2019)

3 / 14

High-level idea

Two-step process:
1 compute most probable trails ΔOUT → ΔC

2 run trail-assisted key recovery

Motivation: alternative to Neural distinguishers (Gohr 2019)

3 / 14

Meet-in-the-Filter

1 precompute the cluster of trails ΔOUT → ΔX

2 (online) for each observed ΔC :
1 compute the filter-set of trails ΔY → ΔC

2 intersect to get trails ΔOUT → (ΔX = ΔY) → ΔC

4 / 14

Meet-in-the-Filter

Cluster
(trails)

Filter-set
(trails)​

1 precompute the cluster of trails ΔOUT → ΔX

2 (online) for each observed ΔC :
1 compute the filter-set of trails ΔY → ΔC

2 intersect to get trails ΔOUT → (ΔX = ΔY) → ΔC

4 / 14

Previous works

1 Differential meet-in-the-middle, e.g. on LowMC (Rechberger, Soleimany, and Tiessen 2018)

2 Trail-assisted key-recovery, e.g. on Speck (Dinur 2014)

5 / 14

Block-cipher family Speck

Designed by NSA (2014)
Simple ARX structure
Block size: 32, 48, 64, . . . (2 words)
Key size: 64, 72, 96, . . . (2-4 words)
Speck32:
2 × 16-bit words state
4 × 16-bit words master key
22 rounds

6 / 14

Block-cipher family Speck

Designed by NSA (2014)
Simple ARX structure
Block size: 32, 48, 64, . . . (2 words)
Key size: 64, 72, 96, . . . (2-4 words)
Speck32:
2 × 16-bit words state
4 × 16-bit words master key
22 rounds

6 / 14

Recursive key recovery (Single-Trail)

Procedure:
1 for each ciphertext pair C ,C ′:
2 for each suggested MiF trail 𝜏 :
3 recover the last 4 subkeys k recursively

bit-by-bit
4 criteria: conformance to the trail 𝜏
5 use key schedule and full trail to test

candidates

[+] online, memoryless
[+] simple to analyze (Biryukov, Teh, and Udovenko 2023)

[-] limited by the S/N ratio

k

∆x

∆z

∆z,z1,z2

∆y,y1,y2

CL,C′
L CR,C′

R

7 / 14

Recursive key recovery (Single-Trail)

Procedure:
1 for each ciphertext pair C ,C ′:
2 for each suggested MiF trail 𝜏 :
3 recover the last 4 subkeys k recursively

bit-by-bit
4 criteria: conformance to the trail 𝜏
5 use key schedule and full trail to test

candidates

[+] online, memoryless
[+] simple to analyze (Biryukov, Teh, and Udovenko 2023)

[-] limited by the S/N ratio

k

∆x

∆z

∆z,z1,z2

∆y,y1,y2

CL,C′
L CR,C′

R

7 / 14

Recursive key recovery (Single-Trail)

Procedure:
1 for each ciphertext pair C ,C ′:
2 for each suggested MiF trail 𝜏 :
3 recover the last 4 subkeys k recursively

bit-by-bit
4 criteria: conformance to the trail 𝜏
5 use key schedule and full trail to test

candidates

[+] online, memoryless
[+] simple to analyze (Biryukov, Teh, and Udovenko 2023)

[-] limited by the S/N ratio

k

∆x

∆z

∆z,z1,z2

∆y,y1,y2

CL,C′
L CR,C′

R

7 / 14

Recursive key recovery (Dynamic Counting)

Procedure:
1 recursively guess key bits k ,

partially decrypting all available ciphertext pairs
C (i),C ′(i)

2 criteria 1: conformance to available MitF trails
3 criteria 2: ≥ c ct pairs alive (e.g. c = 2, 3, 4, 5)

[+] faster attack (stronger filtering)
[-] ×c more data
[-] needs full dataset (memory usage)
[-] harder to analyze

k

∆x(i)

∆z(i)

∆z(i), z
(i)
1 , z

(i)
2

∆y(i), y
(i)
1 , y

(i)
2

C
(i)
L , C

′(i)
L C

(i)
R , C

′(i)
R

8 / 14

Recursive key recovery (Dynamic Counting)

Procedure:
1 recursively guess key bits k ,

partially decrypting all available ciphertext pairs
C (i),C ′(i)

2 criteria 1: conformance to available MitF trails
3 criteria 2: ≥ c ct pairs alive (e.g. c = 2, 3, 4, 5)

[+] faster attack (stronger filtering)
[-] ×c more data
[-] needs full dataset (memory usage)
[-] harder to analyze

k

∆x(i)

∆z(i)

∆z(i), z
(i)
1 , z

(i)
2

∆y(i), y
(i)
1 , y

(i)
2

C
(i)
L , C

′(i)
L C

(i)
R , C

′(i)
R

8 / 14

Recursive key recovery (Dynamic Counting)

Procedure:
1 recursively guess key bits k ,

partially decrypting all available ciphertext pairs
C (i),C ′(i)

2 criteria 1: conformance to available MitF trails
3 criteria 2: ≥ c ct pairs alive (e.g. c = 2, 3, 4, 5)

[+] faster attack (stronger filtering)
[-] ×c more data
[-] needs full dataset (memory usage)
[-] harder to analyze

k

∆x(i)

∆z(i)

∆z(i), z
(i)
1 , z

(i)
2

∆y(i), y
(i)
1 , y

(i)
2

C
(i)
L , C

′(i)
L C

(i)
R , C

′(i)
R

8 / 14

Plan

1 Problem statement

2 Meet-in-The-Filter

3 Application to Speck32

4 Conclusions

8 / 14

Technical details

Trail search: our implementation
of (Huang and Wang 2019)

Meet-in-the-middle optimization
(fast 1-branch matching)

9 / 14

1st

First 16-bit
check

Second 16-
bit check

2nd

Parameter space

1 # rounds (differential/cluster/filter)

1+6+2+2=11
1+0+8+2=11

2 counting factor c
c = 1 single-trail analysis (online, memoryless)
c = 2, 3, 4, 5 better attacks (more data and memory)

3 cluster/filter max weight
maximize to avoid signal loss
constraint: feasible #trails, low overhead

10 / 14

Parameter space

1 # rounds (differential/cluster/filter)
1+6+2+2=11

1+0+8+2=11

2 counting factor c
c = 1 single-trail analysis (online, memoryless)
c = 2, 3, 4, 5 better attacks (more data and memory)

3 cluster/filter max weight
maximize to avoid signal loss
constraint: feasible #trails, low overhead

10 / 14

Parameter space

1 # rounds (differential/cluster/filter)
1+6+2+2=11
1+0+8+2=11

2 counting factor c
c = 1 single-trail analysis (online, memoryless)
c = 2, 3, 4, 5 better attacks (more data and memory)

3 cluster/filter max weight
maximize to avoid signal loss
constraint: feasible #trails, low overhead

10 / 14

Parameter space

1 # rounds (differential/cluster/filter)
1+6+2+2=11
1+0+8+2=11

2 counting factor c

c = 1 single-trail analysis (online, memoryless)
c = 2, 3, 4, 5 better attacks (more data and memory)

3 cluster/filter max weight
maximize to avoid signal loss
constraint: feasible #trails, low overhead

10 / 14

Parameter space

1 # rounds (differential/cluster/filter)
1+6+2+2=11
1+0+8+2=11

2 counting factor c
c = 1 single-trail analysis (online, memoryless)

c = 2, 3, 4, 5 better attacks (more data and memory)

3 cluster/filter max weight
maximize to avoid signal loss
constraint: feasible #trails, low overhead

10 / 14

Parameter space

1 # rounds (differential/cluster/filter)
1+6+2+2=11
1+0+8+2=11

2 counting factor c
c = 1 single-trail analysis (online, memoryless)
c = 2, 3, 4, 5 better attacks (more data and memory)

3 cluster/filter max weight
maximize to avoid signal loss
constraint: feasible #trails, low overhead

10 / 14

Parameter space

1 # rounds (differential/cluster/filter)
1+6+2+2=11
1+0+8+2=11

2 counting factor c
c = 1 single-trail analysis (online, memoryless)
c = 2, 3, 4, 5 better attacks (more data and memory)

3 cluster/filter max weight
maximize to avoid signal loss
constraint: feasible #trails, low overhead

10 / 14

Massive search

11 / 14

Example analysis

Depth (bits)

Tr
ai

l-s
ub

ke
y

pa
irs

 a
t t

he
 d

ep
th

, l
og

2

0

8

16

24

32

40

48

56

64

0 8 16 24 32 40 48 56 64

Total #keys / depth c=1 (model) c=1 (experiment)

11R Attack (1+0+8+2)

12 / 14

Example analysis

Depth (bits)

Tr
ai

l-s
ub

ke
y

pa
irs

 a
t t

he
 d

ep
th

, l
og

2

0

8

16

24

32

40

48

56

64

0 8 16 24 32 40 48 56 64

Total #keys / depth c=1 (model) c=2 (model) c=3 (model) c=4 (model) c=1 (real attack) c=2 (real attack)
c=3 (real attack) c=4 (real attack)

11R Attack (1+0+8+2)

12 / 14

Example analysis

Depth (bits)

Tr
ai

l-s
ub

ke
y

pa
irs

 a
t t

he
 d

ep
th

, l
og

2

0

8

16

24

32

40

48

56

64

0 8 16 24 32 40 48 56 64

Total #keys / depth c=1 (model) c=2 (model) c=3 (model) c=4 (model) c=1 (real attack) c=2 (real attack)
c=3 (real attack) c=4 (real attack)

12R Attack (1+0+9+2)

12 / 14

Example analysis

Depth (bits)

Tr
ai

l-s
ub

ke
y

pa
irs

 a
t t

he
 d

ep
th

, l
og

2

48

56

64

48 56 64

Total #keys / depth c=1 c=2 c=3 c=4 c=5 c=6

15R Attack (1+10+2+2)

12 / 14

Some results

Data complexity, log2

Ti
m

e
co

m
pl

ex
ity

, l
og

2

24
26
28
30
32
34
36
38
40
42
44
46
48
50

13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

C=1 C=2 C=3 C=4 Dinur Gohr

11R Attack (1+0+8+2)

13 / 14

Plan

1 Problem statement

2 Meet-in-The-Filter

3 Application to Speck32

4 Conclusions

13 / 14

Conclusions

Meet-in-the-Filter is a very versatile framework
for differential key recovery

See ia.cr/2022/673 (ACNS 2023) for:
1 theoretical framework
2 analysis techniques
3 attacks on Speck64/128

See ia.cr/2023/851 (SAC 2022) for:
1 simpler theory for c = 1
2 plaintext structures + key bridging
3 attacks on CHAM and KATAN

14 / 14

∆IN

∆OUT

Pr = p

∆X = ∆Y

∆C

Pr = qF
Pr = q

https://ia.cr/2022/673
https://ia.cr/2023/851

References I

Biham, Eli and Adi Shamir (1993). Differential Cryptanalysis of the Data Encryption
Standard. Berlin, Heidelberg: Springer-Verlag. ISBN: 0387979301.

Biryukov, Alex, Je Sen Teh, and Aleksei Udovenko (2023). “Advancing the
Meet-in-the-Filter Technique: Applications to CHAM and KATAN”. In: Selected
Areas in Cryptography 2022. Lecture Notes in Computer Science. To appear.
Springer.

Dinur, Itai (Aug. 2014). “Improved Differential Cryptanalysis of Round-Reduced Speck”.
In: SAC 2014. Ed. by Antoine Joux and Amr M. Youssef. Vol. 8781. LNCS.
Springer, Heidelberg, pp. 147–164. DOI: 10.1007/978-3-319-13051-4_9.

Gohr, Aron (2019). “Improving Attacks on Round-Reduced Speck32/64 Using Deep
Learning”. In: CRYPTO 2019. Vol. 11693. LNCS. Springer, pp. 150–179.

14 / 14

https://doi.org/10.1007/978-3-319-13051-4_9

References II

Huang, Mingjiang and Liming Wang (2019). “Automatic Tool for Searching for
Differential Characteristics in ARX Ciphers and Applications”. In: INDOCRYPT
2019. Vol. 11898. LNCS. Springer, pp. 115–138.

Rechberger, Christian, Hadi Soleimany, and Tyge Tiessen (2018). “Cryptanalysis of
Low-Data Instances of Full LowMCv2”. In: IACR Trans. Symm. Cryptol. 2018.3,
pp. 163–181. ISSN: 2519-173X. DOI: 10.13154/tosc.v2018.i3.163-181.

14 / 14

https://doi.org/10.13154/tosc.v2018.i3.163-181

Signal/Noise Ratio (Biham and Shamir 1993)

When is the differential attack meaningful?

Signal/Noise ratio:

S/N =
2Kp
w

,
p = Pr[ΔIN → ΔOUT] (main differential)
K = guessed subkeys size
w = avg # subkey candidates / pair

Faster than K -bit exhaustive search by a factor (S/N)

Consider observed difference ΔC :

w = 2Kq, where q = Pr[ΔOUT → ΔC] (MiF trail)

14 / 14

∆IN

Pr = p

∆OUT

K subkey
bits

∆C

Signal/Noise Ratio (Biham and Shamir 1993)

When is the differential attack meaningful?
Signal/Noise ratio:

S/N =
2Kp
w

,
p = Pr[ΔIN → ΔOUT] (main differential)
K = guessed subkeys size
w = avg # subkey candidates / pair

Faster than K -bit exhaustive search by a factor (S/N)

Consider observed difference ΔC :

w = 2Kq, where q = Pr[ΔOUT → ΔC] (MiF trail)

14 / 14

∆IN

Pr = p

∆OUT

K subkey
bits

∆C

Signal/Noise Ratio (Biham and Shamir 1993)

When is the differential attack meaningful?
Signal/Noise ratio:

S/N =
2Kp
w

,
p = Pr[ΔIN → ΔOUT] (main differential)
K = guessed subkeys size
w = avg # subkey candidates / pair

Faster than K -bit exhaustive search by a factor (S/N)

Consider observed difference ΔC :

w = 2Kq, where q = Pr[ΔOUT → ΔC] (MiF trail)

14 / 14

∆IN

Pr = p

∆OUT

Pr = q
K subkey

bits

∆C

Signal/Noise Ratio (Biham and Shamir 1993)

When is the differential attack meaningful?
Signal/Noise ratio:

S/N =
2Kp
w

,
p = Pr[ΔIN → ΔOUT] (main differential)
K = guessed subkeys size
w = avg # subkey candidates / pair

Faster than K -bit exhaustive search by a factor (S/N)

Consider observed difference ΔC :

w = 2Kq, where q = Pr[ΔOUT → ΔC] (MiF trail)

Conclude S/N = p
q

14 / 14

∆IN

Pr = p

∆OUT

Pr = q
K subkey

bits

∆C

Signal/Noise Ratio (Biham and Shamir 1993)

When is the differential attack meaningful?
Signal/Noise ratio:

S/N =
2Kp
w

,
p = Pr[ΔIN → ΔOUT] (main differential)
K = guessed subkeys size
w = avg # subkey candidates / pair

Faster than K -bit exhaustive search by a factor (S/N)

Consider observed difference ΔC :

w = 2Kq, where q = Pr[ΔOUT → ΔC] (MiF trail)

Conclude S/N = p
q INCORRECT

14 / 14

∆IN

Pr = p

∆OUT

Pr = q
K subkey

bits

∆C

Gain

define gain g = Pr[a suggested key is the right one]
Pr[a random key is the right one]

we show that g = p
p̃ = Pr[ΔIN→ΔOUT]

Pr[ΔIN→ΔC]
= S/N · q

p̃

ciphertext-randomization hypothesis:

p̃ = 2−|C | ⇒ g = 2|C |p

(general limit of differential key recovery)

14 / 14

∆IN

Pr = p

∆OUT

Pr = q
K subkey

bits

∆C

Pr = p̃

Gain

define gain g = Pr[a suggested key is the right one]
Pr[a random key is the right one]

we show that g = p
p̃ = Pr[ΔIN→ΔOUT]

Pr[ΔIN→ΔC]
= S/N · q

p̃

ciphertext-randomization hypothesis:

p̃ = 2−|C | ⇒ g = 2|C |p

(general limit of differential key recovery)

14 / 14

∆IN

Pr = p

∆OUT

Pr = q
K subkey

bits

∆C

Pr = p̃

Gain

define gain g = Pr[a suggested key is the right one]
Pr[a random key is the right one]

we show that g = p
p̃ = Pr[ΔIN→ΔOUT]

Pr[ΔIN→ΔC]
= S/N · q

p̃

ciphertext-randomization hypothesis:

p̃ = 2−|C | ⇒ g = 2|C |p

(general limit of differential key recovery)

14 / 14

∆IN

Pr = p

∆OUT

Pr = q
K subkey

bits

∆C

Pr = p̃

Gain

define gain g = Pr[a suggested key is the right one]
Pr[a random key is the right one]

we show that g = p
p̃ = Pr[ΔIN→ΔOUT]

Pr[ΔIN→ΔC]
= S/N · q

p̃

ciphertext-randomization hypothesis:

p̃ = 2−|C | ⇒ g = 2|C |p

(general limit of differential key recovery)

14 / 14

∆IN

Pr = p

∆OUT

Pr = q
K subkey

bits

∆C

Pr = p̃

Gain

define gain g = Pr[a suggested key is the right one]
Pr[a random key is the right one]

we show that g = p
p̃ = Pr[ΔIN→ΔOUT]

Pr[ΔIN→ΔC]
= S/N · q

p̃

ciphertext-randomization hypothesis:

p̃ = 2−|C | ⇒ g = 2|C |p

(general limit of differential key recovery)

14 / 14

∆IN

Pr = p

∆OUT

Pr = q
K subkey

bits

∆C

Pr = p̃

	Problem statement
	Meet-in-The-Filter
	Application to Speck32
	Conclusions
	Extra
	References

