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High-level idea

Two-step process:
1 compute most probable trails ΔOUT → ΔC

2 run trail-assisted key recovery

Motivation: alternative to Neural distinguishers (Gohr 2019)
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Meet-in-the-Filter

1 precompute the cluster of trails ΔOUT → ΔX

2 (online) for each observed ΔC :
1 compute the filter-set of trails ΔY → ΔC

2 intersect to get trails ΔOUT → (ΔX = ΔY ) → ΔC
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Previous works

1 Differential meet-in-the-middle, e.g. on LowMC (Rechberger, Soleimany, and Tiessen 2018)

2 Trail-assisted key-recovery, e.g. on Speck (Dinur 2014)
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Block-cipher family Speck

Designed by NSA (2014)
Simple ARX structure
Block size: 32, 48, 64, . . . (2 words)
Key size: 64, 72, 96, . . . (2-4 words)
Speck32:
2 × 16-bit words state
4 × 16-bit words master key
22 rounds
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Recursive key recovery (Single-Trail)

Procedure:
1 for each ciphertext pair C ,C ′:
2 for each suggested MiF trail 𝜏 :
3 recover the last 4 subkeys k recursively

bit-by-bit
4 criteria: conformance to the trail 𝜏
5 use key schedule and full trail to test

candidates

[+] online, memoryless
[+] simple to analyze (Biryukov, Teh, and Udovenko 2023)

[-] limited by the S/N ratio
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Recursive key recovery (Dynamic Counting)

Procedure:
1 recursively guess key bits k ,

partially decrypting all available ciphertext pairs
C (i),C ′(i)

2 criteria 1: conformance to available MitF trails
3 criteria 2: ≥ c ct pairs alive (e.g. c = 2, 3, 4, 5)

[+] faster attack (stronger filtering)
[-] ×c more data
[-] needs full dataset (memory usage)
[-] harder to analyze
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Technical details

Trail search: our implementation
of (Huang and Wang 2019)

Meet-in-the-middle optimization
(fast 1-branch matching)
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Parameter space

1 # rounds (differential/cluster/filter)

1+6+2+2=11
1+0+8+2=11

2 counting factor c
c = 1 single-trail analysis (online, memoryless)
c = 2, 3, 4, 5 better attacks (more data and memory)

3 cluster/filter max weight
maximize to avoid signal loss
constraint: feasible #trails, low overhead
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Massive search
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Example analysis
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Some results

Data complexity, log2
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Conclusions

Meet-in-the-Filter is a very versatile framework
for differential key recovery

See ia.cr/2022/673 (ACNS 2023) for:
1 theoretical framework
2 analysis techniques
3 attacks on Speck64/128

See ia.cr/2023/851 (SAC 2022) for:
1 simpler theory for c = 1
2 plaintext structures + key bridging
3 attacks on CHAM and KATAN

14 / 14

∆IN

∆OUT

Pr = p

∆X = ∆Y

∆C

Pr = qF
Pr = q

https://ia.cr/2022/673
https://ia.cr/2023/851
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Signal/Noise Ratio (Biham and Shamir 1993)

When is the differential attack meaningful?

Signal/Noise ratio:

S/N =
2Kp
w

,
p = Pr[ΔIN → ΔOUT ] (main differential)
K = guessed subkeys size
w = avg # subkey candidates / pair

Faster than K -bit exhaustive search by a factor (S/N)

Consider observed difference ΔC :

w = 2Kq, where q = Pr[ΔOUT → ΔC ] (MiF trail)
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Gain

define gain g = Pr[a suggested key is the right one]
Pr[a random key is the right one]

we show that g = p
p̃ = Pr[ΔIN→ΔOUT ]

Pr[ΔIN→ΔC ]
= S/N · q

p̃

ciphertext-randomization hypothesis:

p̃ = 2−|C | ⇒ g = 2|C |p

(general limit of differential key recovery)
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