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Algebraic Normal Form (ANF)

ANF: f : Fn
2 → F2

f (x) =
∑︁
u∈Fn

2

𝜆u
∏︁

1≤j≤n

x
uj
j

=
∑︁
u∈Fn

2

𝜆uxu

𝜆u ∈ F2

Partial order: u ⪯ v ⇔ ∀i ui ≤ v i

⇔ xu | xv ⇔ vu = 1

Inversion: 𝜆u =
∑︁
x⪯u

f (x)

f (x) =
∑︁
u⪯x

𝜆u
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Problem (Degree)

ANF: f (x) =
∑︁
u∈Fn

2

𝜆uxu

Algebraic degree: deg f = max
u:𝜆u=1

wt(u)

F : Fn
2 → Fm

2 deg F = max
i

deg Fi (min also makes sense)

Problem
Given F : Fn

2 → Fm
2 (in some form), determine or bound its algebraic degree

Typically: F = G (r) ∘ G (r−1) ∘ . . . ∘ G (1) with explicit G (i)
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Finer Problem (Monomials)

Example

Let F (x , y) = G (x) + H(y) : F2n
2 → Fn

2 with degG = degH = n − 1. Then:

• deg F = n − 1

• F does not contain any of the monomials xiyj for all pairs (i , j)

• in fact, F does not contain any multiple of those

• ⇒ F (a, b) + F (a+ 𝛿, b) + F (a, b + 𝛿′) + F (a+ 𝛿, b + 𝛿′) = 0 ∀a, b, 𝛿, 𝛿′

Applications: integral cryptanalysis, cube attacks

Important: ciphers are very structured, we want to catch any such deficiencies
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Naive bound

Proposition (Naive bound)
Let f = g ∘ H. Then,

deg f ≤ deg g × degH

Example

Say g(x) = x1x2x3. Then,

f (x) = g(H(x)) = H1(x)⏟  ⏞  
≤degH

·H2(x)⏟  ⏞  
≤degH

·H3(x)⏟  ⏞  
≤degH⏟  ⏞  

deg g times

Important idea: g a monomial function covers a lot of cases
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Boura-Canteaut bound (Boura and Canteaut 2013)

Theorem (Boura and Canteaut 2013; Boura, Canteaut, and De Cannière 2011)

Let f = g ∘ H with H a bijection. Then,

deg f ≤ n −
⌈︂
n − deg g

degH−1

⌉︂

Degree deficit can not drop by a factor more than degH−1 when pre-composing H

6
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Boura-Canteaut bound - example (SPN)

A (affine)

S S S S

H

A

S S S S

A

H : Fn
2 → Fn

2 (one SPN round)
S : Fm

2 → Fm
2 (an S-box)

degH = deg S ≤ m − 1
degH−1 = deg S−1 ≤ m − 1

degg, when degH = degH−1 = 3

degg◦H

Figure from (Boura-Canteaut-DeCannière, FSE 2011) 7



Carlet bound

Theorem (Carlet 2020)

Let f = g ∘ H, where H : Fn
2 → Fm

2 . Then,

deg f ≤ deg g + deg1ΓH −m

where

• ΓH = {(x ,H(x)) | x ∈ Fn
2}

• 1ΓH : Fn+m
2 → F2 : (x , y) ↦→

⎧⎨⎩1 if H(x) = y ,

0 otherwise
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Bound unification 1

For F : Fn
2 → Fm

2 define (Boura and Canteaut 2013)

𝛿k(F ) = max
𝛼∈Fn

2,wt𝛼≤k
deg F𝛼

= max
g :Fm

2 →F2, deg g≤k
deg (g ∘ F )

Essentially a “precomputed” answer to the problem (example):

k 1 2 3 4 5 6 7 8

𝛿k 3 4 6 7 7 7 7 8

Question: how does it relate to the previous bounds?

9
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Bound unification 2

Theorem (Boura and Canteaut 2013)

𝛿ℓ(F
−1) < n − k ⇔ 𝛿k(F ) < n − ℓ

⇒ knowing d = deg F−1 = 𝛿1(F
−1) yields 𝛿n−d−1(F ) < n − 1

⇒ knowing 𝛿(F ) is equivalent to knowing 𝛿(F−1)

Theorem (Udovenko 2021)
The following are equivalent:

• 𝛿v (F ) = u with minimal such v (i.e., 𝛿v−1(F ) < u)

• ∃ maximal monomial x𝛼y𝛽 in 1ΓF (x , y) with wt𝛼 = u,wt𝛽 = m − v

10



Bound unification 2

Theorem (Boura and Canteaut 2013)

𝛿ℓ(F
−1) < n − k ⇔ 𝛿k(F ) < n − ℓ

⇒ knowing d = deg F−1 = 𝛿1(F
−1) yields 𝛿n−d−1(F ) < n − 1

⇒ knowing 𝛿(F ) is equivalent to knowing 𝛿(F−1)

Theorem (Udovenko 2021)
The following are equivalent:

• 𝛿v (F ) = u with minimal such v (i.e., 𝛿v−1(F ) < u)

• ∃ maximal monomial x𝛼y𝛽 in 1ΓF (x , y) with wt𝛼 = u,wt𝛽 = m − v

10



Bound unification 2

Theorem (Boura and Canteaut 2013)

𝛿ℓ(F
−1) < n − k ⇔ 𝛿k(F ) < n − ℓ

⇒ knowing d = deg F−1 = 𝛿1(F
−1) yields 𝛿n−d−1(F ) < n − 1

⇒ knowing 𝛿(F ) is equivalent to knowing 𝛿(F−1)

Theorem (Udovenko 2021)
The following are equivalent:

• 𝛿v (F ) = u with minimal such v (i.e., 𝛿v−1(F ) < u)

• ∃ maximal monomial x𝛼y𝛽 in 1ΓF (x , y) with wt𝛼 = u,wt𝛽 = m − v

10



Bound unification 2

Theorem (Boura and Canteaut 2013)

𝛿ℓ(F
−1) < n − k ⇔ 𝛿k(F ) < n − ℓ

⇒ knowing d = deg F−1 = 𝛿1(F
−1) yields 𝛿n−d−1(F ) < n − 1

⇒ knowing 𝛿(F ) is equivalent to knowing 𝛿(F−1)

Theorem (Udovenko 2021)
The following are equivalent:

• 𝛿v (F ) ≥ u

• ∃ monomial x𝛼y𝛽 in 1ΓF (x , y) with
• degx x𝛼y𝛽 = wt𝛼 ≥ u, and
• degy x𝛼y𝛽 = wt𝛽 ≥ m − v

Theorem (Udovenko 2021)
The following are equivalent:

• 𝛿v (F ) = u with minimal such v (i.e., 𝛿v−1(F ) < u)

• ∃ maximal monomial x𝛼y𝛽 in 1ΓF (x , y) with wt𝛼 = u,wt𝛽 = m − v

10



Bound unification 2

Theorem (Boura and Canteaut 2013)

𝛿ℓ(F
−1) < n − k ⇔ 𝛿k(F ) < n − ℓ

⇒ knowing d = deg F−1 = 𝛿1(F
−1) yields 𝛿n−d−1(F ) < n − 1

⇒ knowing 𝛿(F ) is equivalent to knowing 𝛿(F−1)

Theorem (Udovenko 2021)
The following are equivalent:

• 𝛿v (F ) = u with minimal such v (i.e., 𝛿v−1(F ) < u)

• ∃ maximal monomial x𝛼y𝛽 in 1ΓF (x , y) with wt𝛼 = u,wt𝛽 = m − v

10



Bound comparison

F : (F27)2 → (F27)2 : (xL, xR) ↦→ (x3
L , x

1/3
R )

deg F = deg F−1 = 4, deg1ΓF
= 20

- naive bound

- Boura-Canteaut bound (deg F−1)

- Carlet bound (deg1ΓF
)

- maximal degree pairs of 1ΓF

/ extremal 𝛿(F ) values

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
degxf

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

de
g y

f

1-dimensional division property
deg F-based bound (naive)
deg F 1-based bound (Boura-Canteaut)
deg F-based bound (Carlet)
The lower closure of all degree pairs of monomials from the ANF of F

Degree pairs not included in the lower closure
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Bound summary

Naive bound (degF)

Boura-Canteaut (degF−1)

Carlet (deg1ΓF )

Full δ (F)
= state-based division property

word-based division property

bit-based division property

perfect division property
(bit-based)

Degree
bounds

Monomial
bounds

precision

inform
ation

used

com
putations
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Multi-round usage of 𝛿(F )

F (1) F (2) F (r−1) F (r)
x(0) y(1) y(r−2) y(r−1) z(0)

Proposition

deg F (r) ∘ F (r−1) ∘ . . . ∘ F (2) ∘ F (1) ≤ d0

Proposition

𝛿ℓ(F
(r) ∘ F (r−1) ∘ . . . ∘ F (2) ∘ F (1)) ≤ d0 by starting from dn = ℓ

Going from the left requires initial guess on the degree (d0)

13
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Word-based division property

Definition

Let F : (Fn
2)

2 → (Fn
2)

2 : (xL, xR) ↦→ (F L(xL, xR),FR(xL, xR)).

• take a product of at most kL outputs of F L and at most kR outputs of FR

• what are the maximal degree pairs in the two input parts that can be achieved?

𝛿kL,kR (F ) = MaxSet
{︀

(wt𝛼1,wt𝛼2)

| (𝛽L, 𝛽R) ∈ (Fn
2)

2, wt𝛽L ≤ kL, wt𝛽R ≤ kR ,

F (xL, xR)
𝛽L||𝛽R contains x𝛼L

L x𝛼R
R

}︀
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Word-based division property - Trails

F (1) F (2) F (r−1) F (r)
x(0) y(1) y(r−2) y(r−1) z(0)

dr = ℓdr−1 = δdr (F (r))dr−2 = δdr−1(F (r−1))
d1 = δd2(F (2))d0 = δd1(F (1))
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(r−1)
L

y
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R
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(0)
L

z
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R
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Proposition (analogy to 1D)

d0 = (kL, kR) is a maximal reachable pair (from dr = (0, 1))

⇒ (F (r)
R ∘ F (r−1) ∘ . . .)(xL, xR) may not contain monomials x𝛼L

L x𝛼R
R

with (wt𝛼L,wt𝛼R) ≻ (kL, kR) 15
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Proposition (better phrased)

d0 = (kL, kR) can NOT be reached (from dr = (0, 1))

⇒ (F (r)
R ∘ F (r−1) ∘ . . .)(xL, xR) does NOT contain monomials x𝛼L

L x𝛼R
R
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Word-based division property - Trails

F (1) F (2) F (r−1) F (r)x
(0)
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(1)
L

y
(1)
R

y
(r−2)
L

y
(r−2)
R

y
(r−1)
L

y
(r−1)
R

z
(0)
L

z
(0)
R

∈ {0, . . . , n}2 ∈ {0, . . . , n}2 ∈ {0, . . . , n}2 ∈ {0, . . . , n}2 ∈ {0, . . . , n}2
dr = (0,1)dr−1 ∈ δ1(F (r))dr−2 ∈ δdr−1(F (r−1))

d1 ∈ δd2(F (2))d0 ∈ δd1(F (1))

Definition (Trail)

A sequence (d0, . . . , dr ), di ∈ {0, . . . , n}2 is called a trail if di ∈ 𝛿di+1(F
(i+1)) or all i ,

denoted
d0

F (1)
−−→ d1

F (2)
−−→ . . .

F (r−1)
−−−−→ dr−1

F (r)

−−→ dr
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Bit-based division property (conventional)

F (1) F (2) F (r−1) F (r)x(0) y(1) y(r−2) y(r−1) z(0)

∈ {0,1}n ∈ {0,1}n ∈ {0,1}n ∈ {0,1}n ∈ {0,1}n
dr = (0,1,0, . . . ,0)dr−1 ∈ δ1(F (r))dr−2 ∈ δdr−1(F (r−1))

d1 ∈ δd2(F (2))d0 ∈ δd1(F (1))

Definition

𝛿k(F ) = MaxSet
{︀

𝛼 | 𝛽 ⪯ k , F (x)𝛽 contains x𝛼
}︀

Proposition

d0 = k can NOT be reached (from dr = (0, 1, 0, . . . , 0))

⇒ (F (r)
2 ∘ F (r−1) ∘ . . .)(x) does NOT contain monomial multiples of xk

16



Bit-based division property (simpler formulation, Hu, Sun, Wang, and Wang 2020)

F (1) F (2) F (r−1) F (r)x(0) y(1) y(r−2) y(r−1) z(0)

z
(0,1,0,...,0)(1)y

wr−1(r−1)y
wr−2(r−2)yw1(1)xu(1)

Definition

xu F−→ y v if F (x)v contains a multiple of xu in its ANF

Proposition

Fix u, v . Then, ∄w1, . . . ,w r−1 : (xu F (1)
−−→ yw1

(1) → . . . → yw r−1
(r−1)

F (r)

−−→ zv )

implies xu F r∘...∘F 1
−−−−−−→ zv does not hold (F (z)v does NOT contain a multiple of xu)
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Bound Summary (Review)

Naive bound (degF)

Boura-Canteaut (degF−1)

Carlet (deg1ΓF )

Full δ (F)
= state-based division property

word-based division property

bit-based division property

perfect division property
(bit-based)

Degree
bounds

Monomial
bounds

precision

inform
ation

used

com
putations

δk(F)

δkL,kR(F)

δkkk(F)
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Interesting properties

Definition

xu F−→ y v if F (x)v ′
contains a multiple of xu in its ANF for some v ′ ⪯ v

Theorem (Udovenko 2021)
The following are equivalent:

1. xu F−→ y v

2. y¬v F−1
−−→ x¬u

3. xuy¬v divides a monomial in 1ΓF (x , y)

19



Graph-indicator formulation

Proposition (Carlet 2020)

Let F (i) : Fmi−1
2 → Fmi

2 , i ∈ {1, . . . , r}, and F = F (r) ∘ . . . ∘ F (1). Then,

1ΓF (x , z) =
∑︁

(y1,...,y r−1)

∈Fm1
2 ×...×F

mr−1
2

1Γ
F (1)

(x , y1) · 1Γ
F (2)

(y1, y2) · . . . · 1Γ
F (r)

(y r−1, z).

Theorem

1ΓF (x , z) contains a multiple of xuzv only if there exists a monomial sequence

xu′
yw1

1 ∈ 1Γ
F (1)

(x , y1)

yw ′
1

1 yw2
2 ∈ 1Γ

F (2)
(y1, y2)

. . .

yw ′
r−1

r−1 zv ′ ∈ 1Γ
F (2)

(y1, y2)

with w1 ∨ w ′
1 = . . .w r−1 ∨ w ′

r−1 = (1, . . . , 1),
u′ ⪰ u, v ′ ⪰ v
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with w1 ∨ w ′
1 = . . .w r−1 ∨ w ′

r−1 = (1, . . . , 1),
u′ ⪰ u, v ′ ⪰ v

if and only there exists a division property trail

xu F (1)
−−→ y t1

1
F (2)
−−→ . . .

F (r−1)
−−−−→ y tr−1

r−1
F (r)

−−→ z¬v
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Computational aspects

• ∃u, . . . , v : (xu F (1)
−−→ . . .

F (r)

−−→ zv ) ? - a search problem

• word-based : exhaustive search / dynamic programming

• bit-based : use SAT solver or MILP optimizer (integer programming)

How to encode constraints of round propagation?

• parallel functions propagate separately

• precision loss: xu F (1)
−−→ zw F (2)

−−→ y v may result in worse bounds than

xu F (2)∘F (1)
−−−−−→ y v

21
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Recall: SPN structure

A

S S S S

A

S S S S

A
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Model S-box

Example: S : F8
2 → F8

2

Generic approaches

• Compute set of valid transitions D = {(u, v)} ⊆ F16
2 , xu S−→ y v

• SAT: logic synthesis (Quine-McCluskey, Espresso, etc.)
• MILP: convex hull + greedy optimization

Better approaches
• valid transitions are monotone ⇒ 1 DNF clause per maximal monomial in 1ΓS

x0101y0111 ⇒ (¬u1 ∧ ¬u3 ∧ v1)

• remove redundant transitions (reduce search space): another monotone bound
• 1 CNF clause is 1 inequality: (can be improved)
(u0 ∨ ¬u1 ∨ u2) ⇐⇒ u0 + (1 − u1) + u2 ≥ 1 (binary variables)
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Model S-box

Example: S : F8
2 → F8

2 AES S-box: ≈ 400 CNF clauses, 27 inequalities

Generic approaches

• Compute set of valid transitions D = {(u, v)} ⊆ F16
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Model linear layer

Example: L : F32
2 → F32

2

Proposition (Zhang and Rijmen 2018)

xu L−→ y v and v is minimal ⇐⇒ the submatrix of L indexed by the vectors u, v is
invertible

problem: very difficult to encode

solution 1: model the inverse matrix by variables, encode matrix multiplication

solution 2: use a lossy method (decompose L into XORs) and filter solutions (lazy,
callback)

24
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Bound Summary (Review)

Naive bound (degF)

Boura-Canteaut (degF−1)

Carlet (deg1ΓF )

Full δ (F)
= state-based division property

word-based division property

bit-based division property

perfect division property
(bit-based)

Straightforward
computation

precision

inform
ation

used

com
putationsExhaustive/heuristic

(dynamic programming)

SAT/MILP/SMT/CP
(search problem)
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Perfect division property

Definition

xu F−→ y v if F (x)v ′
contains a multiple of xu in its ANF for some v ′ ⪯ v

Theorem (Hu, Sun, Wang, and Wang 2020)
A trail

xu F (r)∘F (r−1)∘...∘F (1)
−−−−−−−−−−−−→

exact
zv

is valid if and only if the total number of trails

xu F (1)
−−−→
exact

yw1
(1)

F (2)
−−−→
exact

. . .
F (r−1)
−−−−→
exact

yw r−1
(r−1)

F (s)

−−−→
exact

zv

is odd (trail = vector (w1, . . . ,w r−1))
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is valid if and only if the total number of trails

xu F (1)
−−−→
exact

yw1
(1)

F (2)
−−−→
exact

. . .
F (r−1)
−−−−→
exact

yw r−1
(r−1)

F (s)

−−−→
exact

zv

is odd (trail = vector (w1, . . . ,w r−1))
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Computational aspects

• SAT/MILP models: similar, but have to use generic models (not monotone
anymore)

• Have to count trails: feasible only in a few cases (small block size/small number of
rounds)

• Have to include keys as variables (all previous techniques were key-agnostic)
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Proving degree lower bounds (1)

Let E (x , k) : Fn
2 × Fm

2 → Fn
2 be a keyed permutation. We want to prove absence of

integral distinguishers:

Definition (Integral resistance)

For any set of inputs ∅ ⊊ X ⊊ Fn
2 and any 𝛽 ∈ Fn

2 ∖ {0}, the function∑︀
x∈X ⟨𝛽,E (x , k)⟩ is strictly key dependent.

Theorem (Hebborn, Lambin, Leander, and Todo 2021)

It is sufficient to require that ∀u,𝛽 ∈ Fn
2 the coefficient of xu in ⟨𝛽,E (x , k)⟩ is a

non-constant function of the key, and all these functions are linearly independent
(u ̸= (1, . . . , 1),𝛽 ̸= (0, . . . , 0))
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Proving degree lower bounds (2)

Definition (Integral resistance matrix: Hebborn, Lambin, Leander, and Todo
2021)

Let 𝜆i ,j ;v denote the coefficient of x¬e jkv in Ei (x , k). For some vectors v1, . . . , v s let

ℐ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝜆1,1;v1 𝜆1,1;v2 . . . 𝜆1,1;v s

𝜆2,1;v1 𝜆2,1;v2 . . . 𝜆2,1;v s

...
𝜆n,1;v1 𝜆n,1;v2 . . . 𝜆n,1;v s

𝜆1,2;v1 𝜆1,2;v2 . . . 𝜆1,2;v s

𝜆2,2;v1 𝜆1,2;v2 . . . 𝜆2,2;v s

...
𝜆i,j ;v1 𝜆i,j ;v2 . . . 𝜆i,j ;v s

...
𝜆n−1,n;v1 𝜆n−1,n;v2 . . . 𝜆n−1,n;v s

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ Fn2×s
2
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Proving degree lower bounds (3)

Theorem (Hebborn, Lambin, Leander, and Todo 2021)

If there exists an integral resistance matrix I of full rank n2 for E (x , k), then
E ′(x , k ||k ′) = E (x + k ′, k) : Fn

2 × Fm′
2 × Fm

2 is integral resistant.

Extra whitening key k ′: translate key-dependence from maximal monomials to
lower-degree monomials

Example: x1x2x3 becomes (x1 + k ′
1)(x2 + k ′

2)(x3 + k ′
3) with all 23 functions (from

fixing x) being linearly independent

Cost: ≥ n4 calls to perfect division property (parity counting)

Optimization: carefully choose key monomials (the v i ) to aid computations
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Open problem - extended representation

Let S : Fn
2 → Fn

2 for a small n, e.g. n = 4, 8

1ΓS typically has few maximal monomials xuy v

For linear maps A,B , maximal monomials of 1ΓB∘S∘A can not be computed from
MaxSet(1ΓS ) (in general)

Question: how to represent all such sets compactly?
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Conclusions

Conclusions

• division property is a powerful technique for degree/monomial bounds

• information/precision/computations trade-off

• links to theory (graph indicators)

Open problems

• represent MaxSet(1ΓB∘S∘A) for all linear A,B compactly

• computational hardness (conventional division property)

• better handling of large linear maps

• generalization to non-binary fields

C.f. survey “Mathematical aspects of division property” (CCDS 2023)
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