Cryptanalysis of a Theorem Decomposing the Only Known Solution to the Big APN Problem

Alex Biryukov¹ Léo Perrin¹ <u>Aleksei Udovenko¹</u>

¹University of Luxembourg, SnT

August 17, 2016

Outline

1 Introduction

- 2 Decomposing the Permutation
- 3 The Butterfly Structure
- 4 Properties of the APN Permutation
- 5 Conclusion

Plan

1 Introduction

- 2 Decomposing the Permutation
- 3 The Butterfly Structure
- 4 Properties of the APN Permutation
- 5 Conclusion

The \underline{DDT} of $f: \{0,1\}^n \to \{0,1\}^n$ is a $2^n \times 2^n$ table such that

$$DDT_f[a, b] = \# \{ x \in \{0, 1\}^n, f(x) \oplus f(x \oplus a) = b \}.$$

The $\underline{\text{DDT}}$ of $f: \{0,1\}^n \to \{0,1\}^n$ is a $2^n \times 2^n$ table such that

$$DDT_f[\mathbf{a}, \mathbf{b}] = \# \{ \mathbf{x} \in \{0, 1\}^n, f(\mathbf{x}) \oplus f(\mathbf{x} \oplus \mathbf{a}) = \mathbf{b} \}.$$

Definition (APN)

 $f: \{0,1\}^n \to \{0,1\}^n$ is called <u>APN</u> if and only if

$$DDT_f[a, b] \leq 2$$
 for all $a \neq 0, b$.

In other words: the DDT only contains 0 and 2.

The \underline{DDT} of $f: \{0,1\}^n \to \{0,1\}^n$ is a $2^n \times 2^n$ table such that

$$DDT_f[\mathbf{a}, \mathbf{b}] = \# \{ \mathbf{x} \in \{0, 1\}^n, f(\mathbf{x}) \oplus f(\mathbf{x} \oplus \mathbf{a}) = \mathbf{b} \}.$$

Definition (APN)

 $f: \{0,1\}^n \to \{0,1\}^n$ is called <u>APN</u> if and only if

 $DDT_f[a, b] \leq 2$ for all $a \neq 0, b$.

In other words: the DDT only contains 0 and 2.

The Big APN Problem

Does there exist an APN permutation on $GF(2^n)$ if n is even?

Biryukov, Perrin, Udovenko (uni.lu)

The \underline{DDT} of $f: \{0,1\}^n \to \{0,1\}^n$ is a $2^n \times 2^n$ table such that

$$DDT_f[\mathbf{a}, \mathbf{b}] = \# \{ \mathbf{x} \in \{0, 1\}^n, f(\mathbf{x}) \oplus f(\mathbf{x} \oplus \mathbf{a}) = \mathbf{b} \}.$$

Definition (APN)

 $f: \{0,1\}^n \to \{0,1\}^n$ is called <u>APN</u> if and only if

$$DDT_f[a, b] \leq 2$$
 for all $a \neq 0, b$.

In other words: the DDT only contains 0 and 2.

The Big APN Problem

Does there exist an APN permutation on $GF(2^n)$ if n is even?

For n = 6, yes! [Dillon et al., 2009]

Biryukov, Perrin, Udovenko (uni.lu)

Our Decomposition (and Main Theorem)

The APN permutation of Dillon et al. is affine-equivalent to...

for any 3-bit APN permutation A (e.g. x → x³)
for any α such that Tr(α) = 0, α ≠ 0.

Biryukov, Perrin, Udovenko (uni.lu)

Plan

1 Introduction

- **2** Decomposing the Permutation
 - S-Box Reverse-Engineering
 - Decomposing the Dillon Permutation
 - Implementation

3 The Butterfly Structure

4 Properties of the APN Permutation

5 Conclusion

S-Box Reverse-Engineering

Definition

Using only the look-up table, *reverse-engineering an S-Box* means recovering unpublished information, e.g.:

- what properties were optimized?
- what structure was used to build it?

S-Box Reverse-Engineering

Definition

Using only the look-up table, *reverse-engineering an S-Box* means recovering unpublished information, e.g.:

- what properties were optimized?
- what structure was used to build it?

Possible Targets

. . . .

- S-Box of Skipjack [BP, CRYPTO2015]
- S-Box of Streebog/Kuznechik, [BPU, EUROCRYPT2016]

The Dillon permutation!

Linear Approximation Table (LAT)

Definition (LAT, Fourier Transform, Walsh Spectrum)

The <u>LAT</u> of $f : \{0,1\}^n \to \{0,1\}^n$ is a $2^n \times 2^n$ matrix \mathcal{L} where $\mathcal{L}[\mathbf{a}, \mathbf{b}] = \#\{x \in \mathbb{F}_2^n, \mathbf{a} \cdot x = \mathbf{b} \cdot f(x)\} - 2^{n-1}.$

Jackson Pollock

The absolute LAT of S_0 . white=0, grey=4, black=8

Jackson Pollock

The absolute LAT of S_0 . white=0, grey=4, black=8

The absolute LAT of $\eta \circ S_0$. η is a linear permutation.

TU-Decomposition

 T and U are keyed permutations (mini-block ciphers).

Decomposition of $\eta \circ S_0$.

TU-Decomposition

- T and U are keyed permutations (mini-block ciphers).
- T and U^{-1} are related \implies only attack T.

Decomposition of $\eta \circ S_0$.

Decomposing T

(a) Detaching a linear Feistel round.

Decomposing T

(d) Detaching a linear Feistel round.

Decomposing T

(g) Detaching a linear Feistel round.

(h) Splitting T'^{-1} into N and L.

(i) Simplifying N into \mathcal{I} and linear functions.

Decomposing T and U

1 Deduce a decomposition (see picture).

Biryukov, Perrin, Udovenko (uni.lu)

Decomposing T and U

- **1** Deduce a decomposition (see picture).
- 2 Get rid of constant additions.
- **3** Find a nicer representation of M.

Final Decomposition

Branch size: 3

• $\operatorname{Tr}(\alpha) = 0$

■ *e* ∈ {3, 5, 6}

Bit-Sliced Implementation

Function $A_0(X_0, ..., X_5)$

- 1. $t = (X_5 \land X_3)$
- 2. $X_0 \oplus = t \oplus (X_5 \wedge X_4)$
- 3. $X_1 \oplus = t$
- $4. \quad X_2 \oplus = (X_4 \vee X_3)$
- 5. $t = (X_1 \vee X_0)$
- 6. $X_0 \oplus = (X_2 \wedge X_1) \oplus X_4$
- 7. $X_1 \oplus = (X_2 \wedge X_0) \oplus X_5 \oplus X_3$
- 8. $X_2 \oplus = t \oplus X_3$
- 9. $X_3 \oplus = X_1$
- 10. $X_4 \oplus = X_2 \oplus X_0$

- 11. $X_5 \oplus = X_0$
- 12. $u = X_3$
- 13. $t = X_4$
- 14. $X_3 \oplus = t$
- 15. $X_3 = X_3 \wedge X_5 \oplus t$
- 16. $X_4 \oplus = ((\neg X_5) \wedge u)$
- 17. $X_5 \oplus = (t \lor u)$
- 18. $t = (X_2 \wedge X_0)$
- 19. $X_3 \oplus = t \oplus (X_2 \wedge X_1)$
- $20. \ X_4 \oplus = t$
- 21. $X_5 \oplus = (X_1 \vee X_0)$

Plan

1 Introduction

- 3 The Butterfly Structure
 - Regular Butterflies
 - Feistel Networks

4 Properties of the APN Permutation

5 Conclusion

Definition

• We generalize the structure to any odd branch size:

Open (bijective) butterfly H_e^{α} .

Closed (non-bijective) butterfly V_e^{α} .

CCZ-equivalence

Definition

Two functions are CCZ-equivalent if their graphs are affine-equivalent.

CCZ-equivalence

Definition

Two functions are CCZ-equivalent if their graphs are affine-equivalent.

Theorem

- CCZ-equivalence preserves
 - differential uniformity (maximum DDT coefficient),
 - non-linearity (⇒ max coefficient in the LAT).

CCZ-equivalence

Definition

Two functions are CCZ-equivalent if their graphs are affine-equivalent.

Theorem

- CCZ-equivalence preserves
 - differential uniformity (maximum DDT coefficient),
 - non-linearity (\implies max coefficient in the LAT).

Lemma

Open and closed butterflies are CCZ-equivalent!

Properties

Theorem (For $\alpha \neq 0, 1$)

Consider butterflies operating on 2n bits with n odd and $e = 3 \times 2^{t}$. Differential The diff. uniformity of V_{e}^{α} and H_{e}^{α} is at most 4. Algebraic deg $(V_{e}^{\alpha}) = 2$, deg $(H_{e}^{\alpha}) = n + 1$. Nonlinearity (Experimental for small n): $NL(V_{e}^{\alpha}) = NL(H_{e}^{\alpha}) = 2^{2n-1} - 2^{n}$. The best known to be possible. Feistel Network ($\alpha = 1$)

 F^e (note $F^e = H^1_e$).

Closed butterfly V_e^1 .

Properties of Feistel Butterflies

Theorem (For $\alpha = 1$, i.e. the Feistel case)

Consider butterflies operating on 2n bits with n odd and $e = 3 \times 2^t$. Differential The diff. uniformity of V_e^1 and H_e^1 is exactly 4. The DDT of V_e^1 contains only 0 and 4.

Algebraic $\deg(V_e^1) = 2$, $\deg(H_e^1) = n$.

Properties of Feistel Butterflies

Theorem (For $\alpha = 1$, i.e. the Feistel case)

Consider butterflies operating on 2n bits with n odd and $e = 3 \times 2^t$. Differential The diff. uniformity of V_e^1 and H_e^1 is exactly 4. The DDT of V_e^1 contains only 0 and 4.

Algebraic $\deg(V_e^1) = 2$, $\deg(H_e^1) = n$.

Theorem (CCZ-equivalence with a monomial)

Consider butterflies operating on 2n bits with n odd and $e = 2^{2k} + 1$

Properties of Feistel Butterflies

Theorem (For $\alpha = 1$, i.e. the Feistel case)

Consider butterflies operating on 2n bits with n odd and $e = 3 \times 2^t$. Differential The diff. uniformity of V_e^1 and H_e^1 is exactly 4. The DDT of V_e^1 contains only 0 and 4.

Algebraic $\deg(V_e^1) = 2$, $\deg(H_e^1) = n$.

Theorem (CCZ-equivalence with a monomial)

Consider butterflies operating on 2n bits with n odd and $e = 2^{2k} + 1$ 1 V_e^1 (Lai-Massey-like structure) is Affine-Equivalent to $x \mapsto x^e$ in \mathbb{F}_2^{2n} , 2 H_e^1 (Feistel Network) is CCZ-equivalent to the same function.

Plan

1 Introduction

- 2 Decomposing the Permutation
- 3 The Butterfly Structure
- 4 Properties of the APN Permutation

5 Conclusion

Flexibility

Consider APN butterflies over 6 bits.

Flexibility

Consider APN butterflies over 6 bits.

- \mathcal{A} can be any APN permutation,
- α can be any element \neq 0, 1 with $Tr(\alpha) =$ 0,
- We can XOR any values around the center,
- We can apply identical 3 × 3 linear permutations on the branches around the center.
- We can swap branches before/after the center (breaks AE but not CCZ-equivalence)

Multiplicative Stability

• For $(a, b) \in (\mathbb{F}_2^n)^2$, $(c, d) \in (\mathbb{F}_2^n)^2$, we define $(a, b) \otimes (c, d) = (ac, bd)$.

Multiplicative Stability

For
$$(a, b) \in (\mathbb{F}_2^n)^2$$
, $(c, d) \in (\mathbb{F}_2^n)^2$, we define
 $(a, b) \otimes (c, d) = (ac, bd).$

For closed butterflies,

$$\mathsf{V}^{\alpha}_{e}(\lambda x, \lambda y) \;=\; (\lambda^{e}, \lambda^{e}) \otimes \mathsf{V}^{\alpha}_{e}(x, y),$$

and for open ones:

$$\mathsf{H}^{\alpha}_{e}(\lambda^{e}x,\lambda y) \;=\; (\lambda^{e},\lambda)\otimes \mathsf{H}^{\alpha}_{e}(x,y).$$

Parallel Bent Functions

• V_{α}^3 is affine-equivalent to $(x, y) \mapsto Q(x, y) ||Q(y, x)$, with

$$Q(x, y) = x^3(1 + \alpha^2) + x^2 y.$$

Parallel Bent Functions

• V^3_{α} is affine-equivalent to $(x, y) \mapsto Q(x, y) ||Q(y, x)$, with

$$Q(x, y) = x^3(1 + \alpha^2) + x^2 y.$$

• *Q* is bent (Maiorana-McFarland structure)

Univariate Representation (1/2)

From Dillon et al. (g is their APN permutation):

 $g = f_2 \circ f_1^{-1},$

where

$$\begin{split} f_1(x) &= w^{38}x^{48} + w^{33}x^{40} + w^{28}x^{34} + w^{25}x^{33} + w^{43}x^{32} \\ &+ w^5x^{24} + w^{42}x^{20} + x^{17} + w^2x^{16} + w^4x^{12} \\ &+ w^7x^{10} + w^{58}x^8 + w^{59}x^6 + w^5x^5 + w^{36}x^4 \\ &+ w^{47}x^3 + w^{30}x^2 + w^9x \end{split}$$

and

$$\begin{aligned} f_2(x) &= w^{26}x^{48} + w^{60}x^{40} + w^{46}x^{34} + w^6x^{33} + w^{61}x^{32} \\ &+ w^{51}x^{24} + w^{53}x^{20} + w^{61}x^{17} + w^{54}x^{16} + w^{55}x^{12} \\ &+ w^{33}x^{10} + w^{33}x^8 + w^{19}x^6 + w^{46}x^5 + w^{51}x^4 \\ &+ w^{16}x^3 + w^{37}x^2 + w^{27}x. \end{aligned}$$

Univariate Representation (2/2)

Other definitions

It still works if we redefine f_1, f_2 :

$$\begin{cases} f_1(x) = w^{11}x^{34} + w^{53}x^{20} + x^8 + x, \\ f_2(x) = w^{28}x^{48} + w^{61}x^{34} + w^{12}x^{20} + w^{16}x^8 + x^6 + w^2x. \end{cases}$$

Univariate Representation (2/2)

Other definitions

It still works if we redefine f_1, f_2 :

$$\begin{cases} f_1(x) = w^{11}x^{34} + w^{53}x^{20} + x^8 + x, \\ f_2(x) = w^{28}x^{48} + w^{61}x^{34} + w^{12}x^{20} + w^{16}x^8 + x^6 + w^2x. \end{cases}$$

Another decomposition

g is APN if $g = i \circ m \circ i^{-1}$ and either

$$i(x) = w^{37}x^{48} + x^{34} + w^{49}x^{20} + w^{21}x^8 + w^{30}x^6 + x, \ m(x) = x^8,$$

or
$$i(x) = w^{21}x^{34} + x^{20} + x^8 + x, \ m(x) = w^{52}x^8 + w^{36}x.$$

Kim Mapping

Properties

- The "Kim mapping" is the APN function $\kappa(x) = x^3 + x^{10} + wx^{24}$.
- Not a permutation.
- Already known (not found by Dillon et al.).

Kim Mapping

Properties

- The "Kim mapping" is the APN function $\kappa(x) = x^3 + x^{10} + wx^{24}$.
- Not a permutation.
- Already known (not found by Dillon et al.).

```
Dillon permutation
```

Kim Mapping

Properties

- The "Kim mapping" is the APN function $\kappa(x) = x^3 + x^{10} + wx^{24}$.
- Not a permutation.
- Already known (not found by Dillon et al.).

Plan

1 Introduction

- 2 Decomposing the Permutation
- 3 The Butterfly Structure
- 4 Properties of the APN Permutation

5 Conclusion

Conclusion

There is a Decomposition of the 6-bit APN permutation!

Conclusion

There is a Decomposition of the 6-bit APN permutation!

Open Problems

1 Is the non-linearity of a 2n-bit butterfly always $2^{2n-1} - 2^n$?

Biryukov, Perrin, Udovenko (uni.lu)

Conclusion

There is a Decomposition of the 6-bit APN permutation!

Open Problems

1 Is the non-linearity of a 2n-bit butterfly always $2^{2n-1} - 2^n$?

2 Are there APN Butterflies for n > 3?

Thank you!

Biryukov, Perrin, Udovenko (uni.lu)

Cryptanalysis of a Theorem

August 17, 2016 23 / 23