Cryptanalysis of a Theorem
 Decomposing the Only Known Solution to the Big APN Problem

Alex Biryukov ${ }^{1}$ Léo Perrin ${ }^{1} \quad$ Aleksei Udovenko ${ }^{1}$
${ }^{1}$ University of Luxembourg, SnT

August 17, 2016

UNIVERSITÉ DU LUXEMBOURG

Outline

1 Introduction

2 Decomposing the Permutation

3 The Butterfly Structure

4 Properties of the APN Permutation

5 Conclusion

1 Introduction

2 Decomposing the Permutation

3 The Butterfly Structure

4 Properties of the APN Permutation

5 Conclusion

Definition (DDT)

The DDT of $f:\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ is a $2^{n} \times 2^{n}$ table such that

$$
D D T_{f}[a, b]=\#\left\{x \in\{0,1\}^{n}, f(x) \oplus f(x \oplus a)=b\right\}
$$

Definition (DDT)

The DDT of $f:\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ is a $2^{n} \times 2^{n}$ table such that

$$
D D T_{f}[a, b]=\#\left\{x \in\{0,1\}^{n}, f(x) \oplus f(x \oplus a)=b\right\}
$$

Definition (APN)

$f:\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ is called APN if and only if

$$
D D T_{f}[a, b] \leq 2 \text { for all } a \neq 0, b
$$

In other words: the DDT only contains 0 and 2 .

Definition (DDT)

The DDT of $f:\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ is a $2^{n} \times 2^{n}$ table such that

$$
D D T_{f}[a, b]=\#\left\{x \in\{0,1\}^{n}, f(x) \oplus f(x \oplus a)=b\right\}
$$

Definition (APN)

$f:\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ is called APN if and only if

$$
D D T_{f}[a, b] \leq 2 \text { for all } a \neq 0, b
$$

In other words: the DDT only contains 0 and 2 .

The Big APN Problem

Does there exist an APN permutation on $G F\left(2^{n}\right)$ if n is even?

Definition (DDT)

The DDT of $f:\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ is a $2^{n} \times 2^{n}$ table such that

$$
D D T_{f}[a, b]=\#\left\{x \in\{0,1\}^{n}, f(x) \oplus f(x \oplus a)=b\right\}
$$

Definition (APN)

$f:\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ is called APN if and only if

$$
D D T_{f}[a, b] \leq 2 \text { for all } a \neq 0, b
$$

In other words: the DDT only contains 0 and 2 .

The Big APN Problem

Does there exist an APN permutation on $G F\left(2^{n}\right)$ if n is even?

$$
\text { For } n=6 \text {, yes! [Dillon et al., 2009] }
$$

Our Decomposition (and Main Theorem)

The APN permutation of Dillon et al. is affine-equivalent to...

- for any 3-bit APN permutation \mathcal{A} (e.g. $x \mapsto x^{3}$)
- for any α such that $\operatorname{Tr}(\alpha)=0, \alpha \neq 0$.

Plan

1 Introduction

2 Decomposing the Permutation

- S-Box Reverse-Engineering
- Decomposing the Dillon Permutation
- Implementation

3 The Butterfly Structure

4 Properties of the APN Permutation

5 Conclusion

S-Box Reverse-Engineering

Definition

Using only the look-up table, reverse-engineering an S-Box means recovering unpublished information, e.g.:

■ what properties were optimized?
■ what structure was used to build it?

S-Box Reverse-Engineering

Definition

Using only the look-up table, reverse-engineering an S-Box means recovering unpublished information, e.g.:

- what properties were optimized?

■ what structure was used to build it?

Possible Targets

- S-Box of Skipjack [BP, CRYPTO2015]
- S-Box of Streebog/Kuznechik, [BPU, EUROCRYPT2016]
- The Dillon permutation!

Linear Approximation Table (LAT)

Definition (LAT, Fourier Transform, Walsh Spectrum)

The LAT of $f:\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ is a $2^{n} \times 2^{n}$ matrix \mathcal{L} where

$$
\mathcal{L}[a, b]=\#\left\{x \in \mathbb{F}_{2}^{n}, a \cdot x=b \cdot f(x)\right\}-2^{n-1} .
$$

Jackson Pollock

The absolute LAT of S_{0}. white $=0$, grey $=4$, black $=8$

Jackson Pollock

The absolute LAT of S_{0}. white $=0$, grey $=4$, black $=8$

The absolute LAT of $\eta \circ S_{0}$. η is a linear permutation.

TU-Decomposition

- T and U are keyed permutations (mini-block ciphers).

Decomposition of $\eta \circ S_{0}$.

TU-Decomposition

Decomposition of $\eta \circ S_{0}$.

- T and U are keyed permutations (mini-block ciphers).
- T and U^{-1} are related
\Longrightarrow only attack T.

	0	1	2	3	4	5	6	7
T_{0}	0	6	4	7	3	1	5	2
T_{1}	7	5	1	6	4	2	0	3
T_{2}	4	3	2	0	5	6	1	7
T_{3}	3	5	2	1	4	6	7	0
T_{4}	1	2	0	6	4	3	7	5
T_{5}	6	5	2	4	7	0	1	3
T_{6}	5	2	6	4	0	3	1	7
T_{7}	2	0	1	6	5	3	4	7

Decomposing T

(a) Detaching a linear Feistel round.

Decomposing T

(d) Detaching a linear Feistel round.

(e) Splitting $T^{\prime-1}$ into N and L.

Decomposing T

(g) Detaching a linear Feistel round.

(h) Splitting $T^{\prime-1}$ into N and L.

(i) Simplifying N into \mathcal{I} and linear functions.

Decomposing T and U

1 Deduce a decomposition (see picture).

Decomposing T and U

1 Deduce a decomposition (see picture).
2 Get rid of constant additions.
3 Find a nicer representation of M.

Final Decomposition

■ Branch size: 3

- $\operatorname{Tr}(\alpha)=0$
. $e \in\{3,5,6\}$

Bit-Sliced Implementation

```
Function \(A_{0}\left(X_{0}, \ldots, X_{5}\right)\)
    1. \(t=\left(X_{5} \wedge X_{3}\right)\)
    2. \(X_{0} \oplus=t \oplus\left(X_{5} \wedge X_{4}\right)\)
    3. \(X_{1} \oplus=t\)
    4. \(X_{2} \oplus=\left(X_{4} \vee X_{3}\right)\)
    5. \(t=\left(X_{1} \vee X_{0}\right)\)
    6. \(X_{0} \oplus=\left(X_{2} \wedge X_{1}\right) \oplus X_{4}\)
    7. \(X_{1} \oplus=\left(X_{2} \wedge X_{0}\right) \oplus X_{5} \oplus X_{3}\)
    8. \(X_{2} \oplus=t \oplus X_{3}\)
    9. \(X_{3} \oplus=X_{1}\)
10. \(X_{4} \oplus=X_{2} \oplus X_{0}\)
```

11. $X_{5} \oplus=X_{0}$
12. $u=X_{3}$
13. $t=X_{4}$
14. $X_{3} \oplus=t$
15. $X_{3}=X_{3} \wedge X_{5} \oplus t$
16. $X_{4} \oplus=\left(\left(\neg X_{5}\right) \wedge u\right)$
17. $X_{5} \oplus=(t \vee u)$
18. $t=\left(X_{2} \wedge X_{0}\right)$
19. $X_{3} \oplus=t \oplus\left(X_{2} \wedge X_{1}\right)$
20. $X_{4} \oplus=t$
21. $X_{5} \oplus=\left(X_{1} \vee X_{0}\right)$

Plan

1 Introduction

2 Decomposing the Permutation

3 The Butterfly Structure
■ Regular Butterflies

- Feistel Networks

4 Properties of the APN Permutation

5 Conclusion

Definition

- We generalize the structure to any odd branch size:

Open (bijective) butterfly H_{e}^{α}.

Closed (non-bijective) butterfly \bigvee_{e}^{α}.

CCZ-equivalence

Definition

Two functions are CCZ-equivalent if their graphs are affine-equivalent.

CCZ-equivalence

Definition

Two functions are CCZ-equivalent if their graphs are affine-equivalent.

Theorem

CCZ-equivalence preserves

- differential uniformity (maximum DDT coefficient),
- non-linearity (\Longrightarrow max coefficient in the LAT).

CCZ-equivalence

Definition

Two functions are CCZ-equivalent if their graphs are affine-equivalent.

Theorem

CCZ-equivalence preserves

- differential uniformity (maximum DDT coefficient),

■ non-linearity (\Longrightarrow max coefficient in the LAT).

Lemma

Open and closed butterflies are CCZ-equivalent!

Properties

Theorem (For $\alpha \neq 0,1$)

Consider butterflies operating on $2 n$ bits with n odd and $e=3 \times 2^{t}$.
Differential The diff. uniformity of V_{e}^{α} and H_{e}^{α} is at most 4.
Algebraic $\operatorname{deg}\left(\mathrm{V}_{e}^{\alpha}\right)=2, \operatorname{deg}\left(\mathrm{H}_{e}^{\alpha}\right)=n+1$.
Nonlinearity (Experimental for small n): $N L\left(\mathrm{~V}_{e}^{\alpha}\right)=N L\left(\mathrm{H}_{e}^{\alpha}\right)=2^{2 n-1}-2^{n}$. The best known to be possible.

Feistel Network $(\alpha=1)$

$$
\mathrm{F}^{e}\left(\text { note } \mathrm{F}^{e}=\mathrm{H}_{e}^{1}\right)
$$

Closed butterfly V_{e}^{1}.

Properties of Feistel Butterflies

Theorem (For $\alpha=1$, i.e. the Feistel case)

Consider butterflies operating on $2 n$ bits with n odd and $e=3 \times 2^{t}$. Differential The diff. uniformity of V_{e}^{1} and H_{e}^{1} is exactly 4. The DDT of V_{e}^{1} contains only 0 and 4.
Algebraic $\operatorname{deg}\left(\mathrm{V}_{e}^{1}\right)=2, \operatorname{deg}\left(\mathrm{H}_{e}^{1}\right)=n$.

Properties of Feistel Butterflies

Theorem (For $\alpha=1$, i.e. the Feistel case)

Consider butterflies operating on $2 n$ bits with n odd and $e=3 \times 2^{t}$. Differential The diff. uniformity of V_{e}^{1} and H_{e}^{1} is exactly 4. The DDT of V_{e}^{1} contains only 0 and 4.
Algebraic $\operatorname{deg}\left(\mathrm{V}_{e}^{1}\right)=2, \operatorname{deg}\left(\mathrm{H}_{e}^{1}\right)=n$.

Theorem (CCZ-equivalence with a monomial)

Consider butterflies operating on $2 n$ bits with n odd and $e=2^{2 k}+1$

Properties of Feistel Butterflies

Theorem (For $\alpha=1$, i.e. the Feistel case)

Consider butterflies operating on $2 n$ bits with n odd and $e=3 \times 2^{t}$. Differential The diff. uniformity of V_{e}^{1} and H_{e}^{1} is exactly 4. The DDT of V_{e}^{1} contains only 0 and 4.
Algebraic $\operatorname{deg}\left(\mathrm{V}_{e}^{1}\right)=2, \operatorname{deg}\left(\mathrm{H}_{e}^{1}\right)=n$.

Theorem (CCZ-equivalence with a monomial)

Consider butterflies operating on $2 n$ bits with n odd and $e=2^{2 k}+1$
$1 \mathrm{~V}_{e}^{1}$ (Lai-Massey-like structure) is Affine-Equivalent to $x \mapsto x^{e}$ in $\mathbb{F}_{2}^{2 n}$,
$2 \mathrm{H}_{e}^{1}$ (Feistel Network) is CCZ-equivalent to the same function.

Plan

1 Introduction

2 Decomposing the Permutation

3 The Butterfly Structure

4 Properties of the APN Permutation

5 Conclusion

Flexibility

Consider APN butterflies over 6 bits.

Flexibility

Consider APN butterflies over 6 bits.

- \mathcal{A} can be any APN permutation,
- α can be any element $\neq 0,1$ with $\operatorname{Tr}(\alpha)=0$,
- We can XOR any values around the center,
- We can apply identical 3×3 linear permutations on the branches around the center.

■ We can swap branches before/after the center (breaks AE but not CCZ-equivalence)

Multiplicative Stability

\square For $(a, b) \in\left(\mathbb{F}_{2}^{n}\right)^{2},(c, d) \in\left(\mathbb{F}_{2}^{n}\right)^{2}$, we define

$$
(a, b) \otimes(c, d)=(a c, b d)
$$

Multiplicative Stability

■ For $(a, b) \in\left(\mathbb{F}_{2}^{n}\right)^{2},(c, d) \in\left(\mathbb{F}_{2}^{n}\right)^{2}$, we define

$$
(a, b) \otimes(c, d)=(a c, b d)
$$

- For closed butterflies,

$$
\mathrm{V}_{e}^{\alpha}(\lambda x, \lambda y)=\left(\lambda^{e}, \lambda^{e}\right) \otimes \mathrm{V}_{e}^{\alpha}(x, y)
$$

- and for open ones:

$$
\mathbf{H}_{e}^{\alpha}\left(\lambda^{e} x, \lambda y\right)=\left(\lambda^{e}, \lambda\right) \otimes \mathbf{H}_{e}^{\alpha}(x, y)
$$

Parallel Bent Functions

- V_{α}^{3} is affine-equivalent to $(x, y) \mapsto Q(x, y) \| Q(y, x)$, with

$$
Q(x, y)=x^{3}\left(1+\alpha^{2}\right)+x^{2} y .
$$

Parallel Bent Functions

- V_{α}^{3} is affine-equivalent to $(x, y) \mapsto Q(x, y) \| Q(y, x)$, with

$$
Q(x, y)=x^{3}\left(1+\alpha^{2}\right)+x^{2} y .
$$

- Q is bent (Maiorana-McFarland structure)

Univariate Representation (1/2)

From Dillon et al. (g is their APN permutation):

$$
g=f_{2} \circ f_{1}^{-1},
$$

where

$$
\begin{aligned}
f_{1}(x) & =w^{38} x^{48}+w^{33} x^{40}+w^{28} x^{34}+w^{25} x^{33}+w^{43} x^{32} \\
& +w^{5} x^{24}+w^{42} x^{20}+x^{17}+w^{2} x^{16}+w^{4} x^{12} \\
& +w^{7} x^{10}+w^{58} x^{8}+w^{59} x^{6}+w^{5} x^{5}+w^{36} x^{4} \\
& +w^{47} x^{3}+w^{30} x^{2}+w^{9} x
\end{aligned}
$$

and

$$
\begin{aligned}
f_{2}(x) & =w^{26} x^{48}+w^{60} x^{40}+w^{46} x^{34}+w^{6} x^{33}+w^{61} x^{32} \\
& +w^{51} x^{24}+w^{53} x^{20}+w^{61} x^{17}+w^{54} x^{16}+w^{55} x^{12} \\
& +w^{33} x^{10}+w^{33} x^{8}+w^{19} x^{6}+w^{46} x^{5}+w^{51} x^{4} \\
& +w^{16} x^{3}+w^{37} x^{2}+w^{27} x
\end{aligned}
$$

Univariate Representation (2/2)

Other definitions

It still works if we redefine f_{1}, f_{2} :

$$
\left\{\begin{array}{l}
f_{1}(x)=w^{11} x^{34}+w^{53} x^{20}+x^{8}+x \\
f_{2}(x)=w^{28} x^{48}+w^{61} x^{34}+w^{12} x^{20}+w^{16} x^{8}+x^{6}+w^{2} x
\end{array}\right.
$$

Univariate Representation (2/2)

Other definitions

It still works if we redefine f_{1}, f_{2} :

$$
\left\{\begin{array}{l}
f_{1}(x)=w^{11} x^{34}+w^{53} x^{20}+x^{8}+x \\
f_{2}(x)=w^{28} x^{48}+w^{61} x^{34}+w^{12} x^{20}+w^{16} x^{8}+x^{6}+w^{2} x
\end{array}\right.
$$

Another decomposition

g is APN if $g=i \circ m \circ i^{-1}$ and either

$$
\begin{aligned}
& i(x)=w^{37} x^{48}+x^{34}+w^{49} x^{20}+w^{21} x^{8}+w^{30} x^{6}+x, m(x)=x^{8} \\
& \quad \text { or } \\
& i(x)=w^{21} x^{34}+x^{20}+x^{8}+x, m(x)=w^{52} x^{8}+w^{36} x
\end{aligned}
$$

Kim Mapping

Properties

- The "Kim mapping" is the APN function $\kappa(x)=x^{3}+x^{10}+w x^{24}$.
- Not a permutation.
- Already known (not found by Dillon et al.).

Kim Mapping

Properties

- The "Kim mapping" is the APN function $\kappa(x)=x^{3}+x^{10}+w x^{24}$.
- Not a permutation.
- Already known (not found by Dillon et al.).

Dillon permutation

Kim mapping

Kim Mapping

Properties

- The "Kim mapping" is the APN function $\kappa(x)=x^{3}+x^{10}+w x^{24}$.
- Not a permutation.
- Already known (not found by Dillon et al.).

Plan

1 Introduction

2 Decomposing the Permutation

3 The Butterfly Structure

4 Properties of the APN Permutation

5 Conclusion

Conclusion

There is a Decomposition of the 6-bit APN permutation!

Conclusion

There is a Decomposition of the 6-bit APN permutation!

Open Problems

1 Is the non-linearity of a $2 n$-bit butterfly always $2^{2 n-1}-2^{n}$?

Conclusion

There is a Decomposition of the 6-bit APN permutation!

Open Problems

1 Is the non-linearity of a $2 n$-bit butterfly always $2^{2 n-1}-2^{n}$?
2 Are there APN Butterflies for $n>3$?

Thank you!

