Introducing HDIM	HDIM in Feistel Networks	Impossible Monomials Attack	Division property	Conclusions
0000000	000000	0000	0	0

Algebraic Insights into the Secret Feistel Network

Léo Perrin^{1,2} <u>Aleksei Udovenko^{1,2}</u>

¹University of Luxembourg, ²SnT

March 22, 2016

Introducing HDIM	HDIM in Feistel Networks	Impossible Monomials Attack	Division property O	Conclusions O
Outline				

Introducing HDIM	HDIM in Feistel Networks	Impossible Monomials Attack	Division property	Conclusions 0
Plan				

Introducing HDIM

- 2 HDIM in Feistel Networks
- Impossible Monomials Attack
- 4 Division property

5 Conclusions

 Introducing HDIM
 HDIM in Feistel Networks
 Impossible Monomials Attack
 Division property
 Conclusions

 •000000
 Conclusion
 Conclusion
 Conclusion
 Conclusion
 Conclusion

 Linear Approximation Table (LAT)
 Conclusion
 Conclusion
 Conclusion
 Conclusion

Definition (LAT, Fourier Transform, Walsh Spectrum)

The Linear Approximation Table of $f: \{0,1\}^n \to \{0,1\}^m$ is a $2^n \times 2^m$ matrix \mathcal{L} where

$$\mathcal{L}[\mathbf{a}, \mathbf{b}] = \#\{x \in \mathbb{F}_2^n, \mathbf{a} \cdot x = \mathbf{b} \cdot f(x)\} - 2^{n-1}$$
$$= -\frac{1}{2} \sum_{x \in \mathbb{F}_2^n} (-1)^{\mathbf{a} \cdot x \oplus \mathbf{b} \cdot f(x)}.$$

 Introducing HDIM
 HDIM in Feistel Networks
 Impossible Monomials Attack
 Division property
 Conclusions

 0
 000000
 0000
 0000
 0
 0
 0

Jackson Pollock Representation of LAT

[Biryukov, Perrin CRYPTO2015]: graphical representation of LAT to reverse-engineer S-Boxes.

S-Box F of Skipjack

Introducing HDIM HDIM in Feistel Networks Impossible Monomials Attack Over Conclusions of Conclusions

Jackson Pollock Representation of LAT

[Biryukov, Perrin CRYPTO2015]: graphical representation of LAT to reverse-engineer S-Boxes.

S-Box F of Skipjack

Introducing HDIM	HDIM in Feistel Networks	Impossible Monomials Attack	Division property	Conclusions O
I AT modu	0 4			

Idea

- Look at LAT modulo 4!
- Why? LAT modulo 2^k is related to algebraic degree.

Introducing HDIM	HDIM in Feistel Networks	Impossible Monomials Attack	Division property	Conclusions O

LAT modulo 4

Idea

- Look at LAT modulo 4!
- Why? LAT modulo 2^k is related to algebraic degree.

Introducing HDIM	HDIM in Feistel Networks	Impossible Monomials Attack	Division property	Conclusions 0
I AT modu				

LAT modulo 4

Idea

- Look at LAT modulo 4!
- Why? LAT modulo 2^k is related to algebraic degree.

Introducing HDIM	HDIM in Feistel Networks	Impossible Monomials Attack	Division property O	Conclusions 0
LAT modu	llo 4			

Idea

- Look at LAT modulo 4!
- Why? LAT modulo 2^k is related to algebraic degree.

6-round Feistel Network with bijective functions

Random permutation

Introducing HDIM	HDIM in Feistel Networks	Impossible Monomials Attack	Division property	Conclusions O
Bilinear Ec	orm			

• LAT modulo 4 has highly linear patterns even for random permutations.

Introducing HDIM	HDIM in Feistel Networks	Impossible Monomials Attack	Division property 0	Conclusions O
Dilinoar Ec				

Bilinear Form

- LAT modulo 4 has highly linear patterns even for random permutations.
- Explanation? It is a bilinear form!

Introducing HDIM	HDIM in Feistel Networks	Impossible Monomials Attack	Division property 0	Conclusions O

Bilinear Form

- LAT modulo 4 has highly linear patterns even for random permutations.
- Explanation? It is a bilinear form!
- The following is true:

$$\frac{\mathcal{L}[a,b]}{2} \equiv \bigoplus_{x \in \mathbb{F}_2^n} (b \cdot F(x)) (a \cdot x) \pmod{2}.$$
(1)

Introducing HDIM	HDIM in Feistel Networks	Impossible Monomials Attack	Division property	Conclusions
000000	000000	0000	0	0
DUL E				

Bilinear Form

- LAT modulo 4 has highly linear patterns even for random permutations.
- Explanation? It is a bilinear form!
- The following is true:

$$\frac{\mathcal{L}[a,b]}{2} \equiv \bigoplus_{x \in \mathbb{F}_2^n} (b \cdot F(x)) (a \cdot x) \pmod{2}.$$
(1)

• \Rightarrow express $\mathcal{L}[a, b]/2$ as a vector-matrix-vector product:

$$\frac{\mathcal{L}[a,b]}{2} \equiv b^T \times \hat{H}(F) \times a \pmod{2}, \tag{2}$$

where $\hat{H}(F)$ is an $n \times n$ matrix over \mathbb{F}_2 , such that

$$\hat{H}(F)[i,j] = \bigoplus_{x \in \mathbb{F}_2^n} (e_i \cdot F(x)) (e_j \cdot x).$$
(3)

Another meaning of LAT modulo 4

Algebraic Normal Form (ANF)

Recall that any Boolean function f mapping n bits to 1 can be represented in a unique way as:

$$f(x) = \bigoplus_{u \in \mathbb{F}_2^n} a_u x^u = \bigoplus_{u \in \mathbb{F}_2^n} a_u \prod_{i \in [0,n-1]} x_i^{u_i}.$$

Another meaning of LAT modulo 4

Algebraic Normal Form (ANF)

Recall that any Boolean function f mapping n bits to 1 can be represented in a unique way as:

$$f(x) = \bigoplus_{u \in \mathbb{F}_2^n} a_u x^u = \bigoplus_{u \in \mathbb{F}_2^n} a_u \prod_{i \in [0,n-1]} x_i^{u_i}.$$

Lemma (Another meaning of LAT modulo 4)

 $\hat{H}(F)[i,j] = 1$ if and only if the ANF of *i*th bit of F contains the monomial $\prod_{k \neq j} x_k$ (which has degree n - 1).

High-Degree Indicator Matrix

Definition (High-Degree Indicator Matrix)

We will call $\hat{H}(F)$ High-Degree Indicator Matrix (HDIM).

High-Degree Indicator Matrix

Definition (High-Degree Indicator Matrix)

We will call $\hat{H}(F)$ High-Degree Indicator Matrix (HDIM).

Computing the **HDIM**

 Each row or column of Ĥ(F) is a ⊕-sum of F over a particular cube of dimension n − 1.

High-Degree Indicator Matrix

Definition (High-Degree Indicator Matrix)

We will call $\hat{H}(F)$ High-Degree Indicator Matrix (HDIM).

Computing the HDIM

- Each row or column of Ĥ(F) is a ⊕-sum of F over a particular cube of dimension n − 1.
- For one row/column we need 2^{n-1} data and 2^{n-1} time.

High-Degree Indicator Matrix

Definition (High-Degree Indicator Matrix)

We will call $\hat{H}(F)$ High-Degree Indicator Matrix (HDIM).

Computing the HDIM

- Each row or column of Ĥ(F) is a ⊕-sum of F over a particular cube of dimension n − 1.
- For one row/column we need 2^{n-1} data and 2^{n-1} time.
- For whole $\hat{H}(F)$ we need full codebook and $n2^{n-1}$ time.

High-Degree Indicator Matrix

Definition (High-Degree Indicator Matrix)

We will call $\hat{H}(F)$ High-Degree Indicator Matrix (HDIM).

Computing the HDIM

- Each row or column of Ĥ(F) is a ⊕-sum of F over a particular cube of dimension n − 1.
- For one row/column we need 2^{n-1} data and 2^{n-1} time.
- For whole $\hat{H}(F)$ we need full codebook and $n2^{n-1}$ time.
- Neglible memory complexity *n* bits to store the sum.

000000	OOOOOOO	Impossible Monomials Attack	O O	0 O
D				

Properties of HDIM

Theorem (Linear transformations and HDIM)

Let μ, η be linear n-bit mappings, F be an n-bit permutation and let $G = \eta \circ F \circ \mu$. Then it holds that

$$\hat{H}(G) = \eta \times \hat{H}(F) \times (\mu^t)^{-1}.$$

000000	0000000	Impossible Monomials Attack	0	0

Properties of HDIM

Theorem (Linear transformations and HDIM)

Let μ, η be linear n-bit mappings, F be an n-bit permutation and let $G = \eta \circ F \circ \mu$. Then it holds that

$$\hat{H}(G) = \eta \times \hat{H}(F) \times (\mu^t)^{-1}.$$

- Linear transformations applied to a permutation modify its HDIM in a linear way.
- We will use this Theorem to recover whitening linear layers.

Introducing HDIM	HDIM in Feistel Networks	Impossible Monomials Attack	Division property O	Conclusions O
Plan				

Introducing HDIM

- 2 HDIM in Feistel Networks
- 3 Impossible Monomials Attack
- 4 Division property

5 Conclusions

LAT modulo 4 patterns

• Recall the LAT modulo 4 patterns that we have spotted:

4-round Feistel Network with bijective functions

HDIM in Feistel Networks Impossible Monomials Attack Introducing HDIM Division property

- LAT modulo 4 patterns
 - Recall the LAT modulo 4 patterns that we have spotted:
 - Can be nicely rephrased in terms of HDIM.

5-round Feistel Network with bijective functions

HDIM Patterns in Feistel Networks

Generalization by Number of Rounds

Theorem

• Let F_d^r be a Feistel Network with r rounds and degree d of round functions.

Introducing HDIM in Feistel Networks Impossible Monomials Attack Over Conclusions

Generalization by Number of Rounds

Theorem

- Let F_d^r be a Feistel Network with r rounds and degree d of round functions.
- Let $\theta(d, r) = d^{\lfloor r/2 \rfloor 1} + d^{\lceil r/2 \rceil 1}$ be a parameter.

Generalization by Number of Rounds

Theorem

- Let F_d^r be a Feistel Network with r rounds and degree d of round functions.
- Let $\theta(d, r) = d^{\lfloor r/2 \rfloor 1} + d^{\lceil r/2 \rceil 1}$ be a parameter.
- Assume that the round functions are permutations. Then

•
$$\hat{H}(\mathsf{F}_d^r) = \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{0} & ? \end{bmatrix}$$
, when $\theta(d, r) < 2n$.
• $\hat{H}(\mathsf{F}_d^r) = \begin{bmatrix} \mathbf{0} & ? \\ ? & ? \end{bmatrix}$, when $\theta(d, r-1) < 2n$.

Generalization by Number of Rounds

Theorem

- Let F_d^r be a Feistel Network with r rounds and degree d of round functions.
- Let $\theta(d, r) = d^{\lfloor r/2 \rfloor 1} + d^{\lceil r/2 \rceil 1}$ be a parameter.
- Assume that the round functions are permutations. Then

•
$$\hat{H}(\mathsf{F}_d^r) = \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{0} & ? \end{bmatrix}$$
, when $\theta(d, r) < 2n$.
• $\hat{H}(\mathsf{F}_d^r) = \begin{bmatrix} \mathbf{0} & ? \\ ? & ? \end{bmatrix}$, when $\theta(d, r-1) < 2n$.

• For non-bijective round functions, the results hold for one round less.

Generalization by Number of Rounds

Theorem

- Let F_d^r be a Feistel Network with r rounds and degree d of round functions.
- Let $\theta(d, r) = d^{\lfloor r/2 \rfloor 1} + d^{\lceil r/2 \rceil 1}$ be a parameter.
- Assume that the round functions are permutations. Then

•
$$\hat{H}(\mathsf{F}_d^r) = \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{0} & ? \end{bmatrix}$$
, when $\theta(d, r) < 2n$.
• $\hat{H}(\mathsf{F}_d^r) = \begin{bmatrix} \mathbf{0} & ? \\ ? & ? \end{bmatrix}$, when $\theta(d, r-1) < 2n$.

• For non-bijective round functions, the results hold for one round less.

Distinguisher for Feistel Networks: one HDIM row or column is enough.

Generalization by Number of Rounds

Theorem

- Let F_d^r be a Feistel Network with r rounds and degree d of round functions.
- Let $\theta(d, r) = d^{\lfloor r/2 \rfloor 1} + d^{\lceil r/2 \rceil 1}$ be a parameter.
- Assume that the round functions are permutations. Then

•
$$\hat{H}(\mathsf{F}_d^r) = \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{0} & ? \end{bmatrix}$$
, when $\theta(d, r) < 2n$.
• $\hat{H}(\mathsf{F}_d^r) = \begin{bmatrix} \mathbf{0} & ? \\ ? & ? \end{bmatrix}$, when $\theta(d, r-1) < 2n$.

• For non-bijective round functions, the results hold for one round less.

Distinguisher for Feistel Networks: one HDIM row or column is enough. Weak compared to known distinguishers for up to 5 rounds, but can attack more rounds when the degree is low.

Introducing HDIM	HDIM in Feistel Networks	Impossible Monomials Attack	Division property 0	Conclusions O
Proof Idea				

• Recall the equation for HDIM:

$$\hat{H}(F)[i,j] = \bigoplus_{x \in \mathbb{F}_2^{2n}} (e_i \cdot F(x))(e_j \cdot x)$$

Introducing HDIM	HDIM in Feistel Networks	Impossible Monomials Attack	Division property	Conclusions 0
Proof Idea				

• Recall the equation for HDIM:

$$\hat{H}(F)[i,j] = \bigoplus_{x \in \mathbb{F}_2^{2n}} (e_i \cdot F(x))(e_j \cdot x)$$

• Change sum variables:

$$= \bigoplus_{\alpha \mid |\gamma \in \mathbb{F}_2^{2n}} (e_i \cdot g(\alpha, \gamma)) (e_j \cdot h(\alpha, \gamma)).$$

Introducing HDIM	HDIM in Feistel Networks	Impossible Monomials Attack	Division property O	Conclusions O
Proof Idea				

• Recall the equation for HDIM:

$$\hat{H}(F)[i,j] = \bigoplus_{x \in \mathbb{F}_2^{2n}} (e_i \cdot F(x))(e_j \cdot x)$$

• Change sum variables:

$$= \bigoplus_{\alpha \mid\mid \gamma \in \mathbb{F}_{2}^{2n}} (e_{i} \cdot g(\alpha, \gamma)) (e_{j} \cdot h(\alpha, \gamma)).$$

• Calculate the degrees of *h* and *g* straightforwardly and sum them.

Introducing HDIM	HDIM in Feistel Networks	Impossible Monomials Attack	Division property O	Conclusions O
Proof Idea				

• Recall the equation for HDIM:

$$\hat{H}(F)[i,j] = \bigoplus_{x \in \mathbb{F}_2^{2n}} (e_i \cdot F(x))(e_j \cdot x)$$

• Change sum variables:

$$= \bigoplus_{\alpha \mid\mid \gamma \in \mathbb{F}_{2}^{2n}} (e_{i} \cdot g(\alpha, \gamma)) (e_{j} \cdot h(\alpha, \gamma)).$$

- Calculate the degrees of *h* and *g* straightforwardly and sum them.
- For bijective round functions, we can get one round more by summing over α and β .

Introducing HDIM in Feistel Networks Impossible Monomials Attack Over Conclusions of Conclusions

Feistel Network with Whitening Linear Layers

The AF^rA structure:

- Feistel Network with *r* rounds and *n*-bit branches.
- *f_i*: secret and independent random functions.
- whitened with secret affine layers A_{in}, A_{out} .

Introducing HDIM In Feistel Networks Impossible Monomials Attack Over Conclusions

Feistel Network with Whitening Linear Layers

The AF^rA structure:

- Feistel Network with *r* rounds and *n*-bit branches.
- *f_i*: secret and independent random functions.
- whitened with secret affine layers A_{in}, A_{out} .

Cryptanalysis goals:

- distinguish from random permutation;
- recover the secret components.

Introducing HDIM	HDIM in Feistel Networks	Impossible Monomials Attack	Division property O	Conclusions O
Attacking	AF ^r A			

17 / 27

Introducing HDIM	HDIM in Feistel Networks	Impossible Monomials Attack	Division property	Conclusions O
Attacking	AF ^r A			

- Let *F* be a Feistel Network with *r* rounds, such that $\hat{H}(F) = \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{0} & ? \end{bmatrix}$ (e.g. 4 rounds with bijective functions).
- Let $G = \eta \circ F \circ \mu$. That is, G is AF^rA.
- Then by properties of HDIM we have:

$$\eta^{-1} \times \hat{H}(G) \times \mu^t = \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{?} \end{bmatrix}$$

- Let *F* be a Feistel Network with *r* rounds, such that $\hat{H}(F) = \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{0} & ? \end{bmatrix}$ (e.g. 4 rounds with bijective functions).
- Let $G = \eta \circ F \circ \mu$. That is, G is AF^rA.
- Then by properties of HDIM we have:

$$\eta^{-1} \times \hat{H}(G) \times \mu^t = \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{?} \end{bmatrix}$$

• Parts of η and μ merge into the Feistel structure, so we have less unknowns and we can solve the system.

- Let *F* be a Feistel Network with *r* rounds, such that $\hat{H}(F) = \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{0} & ? \end{bmatrix}$ (e.g. 4 rounds with bijective functions).
- Let $G = \eta \circ F \circ \mu$. That is, G is AF^rA.
- Then by properties of HDIM we have:

$$\eta^{-1} \times \hat{H}(G) \times \mu^{t} = \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{?} \end{bmatrix}$$

- Parts of η and μ merge into the Feistel structure, so we have less unknowns and we can solve the system.
- Distinguisher for AFrA and Partial recovery of linear layers.
- Complexity is dominated by computing HDIM $n2^{2n-1}$.

• In some special cases we can attack one more round. Then we will need only that $\hat{H}(F) = \begin{bmatrix} \mathbf{0} & ? \\ ? & ? \end{bmatrix}$ (for example, 5 rounds with bijective functions).

- In some special cases we can attack one more round. Then we will need only that $\hat{H}(F) = \begin{bmatrix} \mathbf{0} & ? \\ ? & ? \end{bmatrix}$ (for example, 5 rounds with bijective functions).
- One of such cases is when the linear layers are *inverses* of each other (A⁻¹F^rA).

- In some special cases we can attack one more round. Then we will need only that $\hat{H}(F) = \begin{bmatrix} \mathbf{0} & ? \\ ? & ? \end{bmatrix}$ (for example, 5 rounds with bijective functions).
- One of such cases is when the linear layers are *inverses* of each other (A⁻¹F^rA).
- Another possible case is one-sided whitening: F^rA.

- In some special cases we can attack one more round. Then we will need only that $\hat{H}(F) = \begin{bmatrix} \mathbf{0} & ? \\ ? & ? \end{bmatrix}$ (for example, 5 rounds with bijective functions).
- One of such cases is when the linear layers are *inverses* of each other (A⁻¹F^rA).
- Another possible case is one-sided whitening: F^rA.
- Partial recovery of linear layers for $A^{-1}F^{r}A$ or $F^{r}A$.
- Complexity is dominated by computing HDIM $n2^{2n-1}$.

Introducing HDIM	HDIM in Feistel Networks	Impossible Monomials Attack	Division property O	Conclusions O
Plan				

Introducing HDIM

2 HDIM in Feistel Networks

Impossible Monomials Attack

4 Division property

5 Conclusions

Introducing HDIM in Feistel Networks Impossible Monomials Attack Division property Conclusions

Generalizing to other ANF Monomials

• Previously, we exploited predictable absence of particular terms of degree n-1 in the ANFs of some output bits (entries $\hat{H}(F)_{i,j} = 0$).

Generalizing to other ANF Monomials

- Previously, we exploited predictable absence of particular terms of degree n-1 in the ANFs of some output bits (entries $\hat{H}(F)_{i,j} = 0$).
- This is an *extreme* case, we tried to cover more rounds, but we recovered only surrounding linear layers.

Introducing HDIM In Feistel Networks Impossible Monomials Attack Over Conclusions of Conclusions

Generalizing to other ANF Monomials

- Previously, we exploited predictable absence of particular terms of degree n-1 in the ANFs of some output bits (entries $\hat{H}(F)_{i,j} = 0$).
- This is an *extreme* case, we tried to cover more rounds, but we recovered only surrounding linear layers.
- Consider the case when $\hat{H}(F) = \begin{bmatrix} 0 & 0 \\ 0 & ? \end{bmatrix}$. There are $3n^2$ impossible terms of degree n 1. But there are more impossible terms of lower degree.

Introducing HDIM HDIM in Feistel Networks Impossible Monomials Attack Over Conclusions of Conclusions

Generalizing to other ANF Monomials

- Previously, we exploited predictable absence of particular terms of degree n-1 in the ANFs of some output bits (entries $\hat{H}(F)_{i,j} = 0$).
- This is an *extreme* case, we tried to cover more rounds, but we recovered only surrounding linear layers.
- Consider the case when $\hat{H}(F) = \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{0} & ? \end{bmatrix}$. There are $3n^2$ impossible terms of degree n-1. But there are more impossible terms of lower degree.
- The predictable absence of such terms may be used to recover a secret round function.

• Consider a 5-round Feistel Network *F* with bijective round functions. Let *f* be the last round function.

 Introducing HDIM
 HDIM in Feistel Networks
 Impossible Monomials Attack
 Division property
 Conclusions

 Recovery attack on 5-round Feistel Network (1/2)

- Consider a 5-round Feistel Network *F* with bijective round functions. Let *f* be the last round function.
- We can prove that there are more than 2ⁿ monomials which can't occur in the ANFs on right branch of the 4-round FN.

 Introducing HDIM
 HDIM in Feistel Networks
 Impossible Monomials Attack
 Division property
 Conclusions

 Recovery attack on 5-round Feistel Network (1/2)

- Consider a 5-round Feistel Network *F* with bijective round functions. Let *f* be the last round function.
- We can prove that there are more than 2ⁿ monomials which can't occur in the ANFs on right branch of the 4-round FN.
- This gives us information about the last round function f.

• We obtain a linear system with 2ⁿ unknowns (ANF coefficients of f_i) and more than 2ⁿ equations.

- We obtain a linear system with 2ⁿ unknowns (ANF coefficients of f_i) and more than 2ⁿ equations.
- By solving the system we recover the secret round function f (up to a XOR constant).

Introducing HDIM In Feistel Networks Impossible Monomials Attack Division property Conclusions of Recovery attack on 5-round Feistel Network (2/2)

- We obtain a linear system with 2ⁿ unknowns (ANF coefficients of f_i) and more than 2ⁿ equations.
- By solving the system we recover the secret round function *f* (up to a XOR constant).
- Complexity is dominated by generating the system and is $O(2^{3n})$.

Introducing HDIM HDIM in Feistel Networks Impossible Monomials Attack Division property Conclusions

Generalization by number of rounds

• If the degrees of round functions are low, we can attack more rounds.

Introducing HDIM HDIM in Feistel Networks Impossible Monomials Attack Division property Conclusions

Generalization by number of rounds

• If the degrees of round functions are low, we can attack more rounds.

Theorem (Impossible Monomials in Feistel Networks)

Let F be a 2n-bit Feistel Network with r rounds and round functions of degree at most d. If $d^{r-2} < n$, then there are at least 2^n impossible monomials in the ANFs of right bits of F. Introducing HDIM HDIM in Feistel Networks Impossible Monomials Attack Original Conclusions of Conclusions

Generalization by number of rounds

• If the degrees of round functions are low, we can attack more rounds.

Theorem (Impossible Monomials in Feistel Networks)

Let F be a 2n-bit Feistel Network with r rounds and round functions of degree at most d. If $d^{r-2} < n$, then there are at least 2^n impossible monomials in the ANFs of right bits of F.

• Recovery attack when $d^{r-3} < n$. Note that the bound is not tight, the previously described attack on 5 rounds does not satisfy this condition.

Introducing HDIM HDIM in Feistel Networks Ococo

Generalization by number of rounds

• If the degrees of round functions are low, we can attack more rounds.

Theorem (Impossible Monomials in Feistel Networks)

Let F be a 2n-bit Feistel Network with r rounds and round functions of degree at most d. If $d^{r-2} < n$, then there are at least 2^n impossible monomials in the ANFs of right bits of F.

- Recovery attack when $d^{r-3} < n$. Note that the bound is not tight, the previously described attack on 5 rounds does not satisfy this condition.
- Moreover, with low degrees there are less unknowns and we need less impossible monomials.

Introducing HDIM	HDIM in Feistel Networks	Impossible Monomials Attack	Division property O	Conclusions O
Plan				

Introducing HDIM

- 2 HDIM in Feistel Networks
- Impossible Monomials Attack

Oivision property

5 Conclusions

• *Division Property* is a tool for integral attacks introduced recently by Todo.

- *Division Property* is a tool for integral attacks introduced recently by Todo.
- Division Property allows to find cubes of dimension 2n 1 (or less) over which a given Feistel Network sums to zero.

- *Division Property* is a tool for integral attacks introduced recently by Todo.
- Division Property allows to find cubes of dimension 2n 1 (or less) over which a given Feistel Network sums to zero.
- Such cubes correspond to the absent ANF coefficients of degree 2n 1 (or less) which correspond to zero items in HDIM.

- *Division Property* is a tool for integral attacks introduced recently by Todo.
- Division Property allows to find cubes of dimension 2n 1 (or less) over which a given Feistel Network sums to zero.
- Such cubes correspond to the absent ANF coefficients of degree 2n 1 (or less) which correspond to zero items in HDIM.
- The results for concrete Feistel Networks obtained by Todo are very similar to ours.

Introducing HDIM	HDIM in Feistel Networks	Impossible Monomials Attack	Division property	Conclusions O
Plan				

Introducing HDIM

- 2 HDIM in Feistel Networks
- Impossible Monomials Attack

④ Division property

Introducing HDIM	HDIM in Feistel Networks	Impossible Monomials Attack	Division property	Conclusions •
C I .				

Conclusions

Conclusions

Thank you!