Algebraic Insights into the Secret Feistel Network

Léo Perrin ${ }^{1,2}$ Aleksei Udovenko ${ }^{1,2}$

${ }^{1}$ University of Luxembourg,
${ }^{2} \mathrm{SnT}$

March 22, 2016
SnT
securityandtrust.lu

Outline

Plan

(1) Introducing HDIM
(2) HDIM in Feistel Networks
(3) Impossible Monomials Attack

4 Division property
(5) Conclusions

Linear Approximation Table (LAT)

Definition (LAT, Fourier Transform, Walsh Spectrum)

The Linear Approximation Table of $f:\{0,1\}^{n} \rightarrow\{0,1\}^{m}$ is a $2^{n} \times 2^{m}$ matrix \mathcal{L} where

$$
\begin{aligned}
\mathcal{L}[a, b] & =\#\left\{x \in \mathbb{F}_{2}^{n}, a \cdot x=b \cdot f(x)\right\}-2^{n-1} \\
& =-\frac{1}{2} \sum_{x \in \mathbb{F}_{2}^{n}}(-1)^{a \cdot x \oplus b \cdot f(x)} .
\end{aligned}
$$

Jackson Pollock Representation of LAT

[Biryukov, Perrin CRYPTO2015]: graphical representation of LAT to reverse-engineer S-Boxes.

S-Box F of Skipjack

Jackson Pollock Representation of LAT

[Biryukov, Perrin CRYPTO2015]: graphical representation of LAT to reverse-engineer S-Boxes.

S-Box F of Skipjack

4-round Feistel Network with bijective functions

LAT modulo 4

Idea

- Look at LAT modulo 4!
- Why? LAT modulo 2^{k} is related to algebraic degree.

LAT modulo 4

Idea

- Look at LAT modulo 4!
- Why? LAT modulo 2^{k} is related to algebraic degree.

4-round Feistel Network with bijective functions

Idea

- Look at LAT modulo 4!
- Why? LAT modulo 2^{k} is related to algebraic degree.

4-round Feistel Network with bijective functions

5-round Feistel Network with bijective functions

LAT modulo 4

Idea

- Look at LAT modulo 4!
- Why? LAT modulo 2^{k} is related to algebraic degree.

6-round Feistel Network
with bijective functions

LAT modulo 4

Idea

- Look at LAT modulo 4!
- Why? LAT modulo 2^{k} is related to algebraic degree.

Random permutation

Bilinear Form

- LAT modulo 4 has highly linear patterns even for random permutations.

Bilinear Form

- LAT modulo 4 has highly linear patterns even for random permutations.
- Explanation? It is a bilinear form!

Bilinear Form

- LAT modulo 4 has highly linear patterns even for random permutations.
- Explanation? It is a bilinear form!
- The following is true:

$$
\begin{equation*}
\frac{\mathcal{L}[a, b]}{2} \equiv \bigoplus_{x \in \mathbb{F}_{2}^{n}}(b \cdot F(x))(a \cdot x) \quad(\bmod 2) \tag{1}
\end{equation*}
$$

Bilinear Form

- LAT modulo 4 has highly linear patterns even for random permutations.
- Explanation? It is a bilinear form!
- The following is true:

$$
\begin{equation*}
\frac{\mathcal{L}[a, b]}{2} \equiv \bigoplus_{x \in \mathbb{F}_{2}^{n}}(b \cdot F(x))(a \cdot x) \quad(\bmod 2) \tag{1}
\end{equation*}
$$

- \Rightarrow express $\mathcal{L}[a, b] / 2$ as a vector-matrix-vector product:

$$
\begin{equation*}
\frac{\mathcal{L}[a, b]}{2} \equiv b^{T} \times \hat{H}(F) \times a \quad(\bmod 2) \tag{2}
\end{equation*}
$$

where $\hat{H}(F)$ is an $n \times n$ matrix over \mathbb{F}_{2}, such that

$$
\begin{equation*}
\hat{H}(F)[i, j]=\bigoplus_{x \in \mathbb{F}_{2}^{n}}\left(e_{i} \cdot F(x)\right)\left(e_{j} \cdot x\right) \tag{3}
\end{equation*}
$$

Another meaning of LAT modulo 4

Algebraic Normal Form (ANF)

Recall that any Boolean function f mapping n bits to 1 can be represented in a unique way as:

$$
f(x)=\bigoplus_{u \in \mathbb{F}_{2}^{n}} a_{u} x^{u}=\bigoplus_{u \in \mathbb{F}_{2}^{n}} a_{u} \prod_{i \in[0, n-1]} x_{i}^{u_{i}} .
$$

Another meaning of LAT modulo 4

Algebraic Normal Form (ANF)

Recall that any Boolean function f mapping n bits to 1 can be represented in a unique way as:

$$
f(x)=\bigoplus_{u \in \mathbb{F}_{2}^{n}} a_{u} x^{u}=\bigoplus_{u \in \mathbb{F}_{2}^{n}} a_{u} \prod_{i \in[0, n-1]} x_{i}^{u_{i}}
$$

Lemma (Another meaning of LAT modulo 4)
$\hat{H}(F)[i, j]=1$ if and only if the ANF of ith bit of F contains the monomial $\prod_{k \neq j} x_{k}$ (which has degree $n-1$).

High-Degree Indicator Matrix

Definition (High-Degree Indicator Matrix)

We will call $\hat{H}(F)$ High-Degree Indicator Matrix (HDIM).

High-Degree Indicator Matrix

Definition (High-Degree Indicator Matrix)
We will call $\hat{H}(F)$ High-Degree Indicator Matrix (HDIM).

Computing the HDIM

- Each row or column of $\hat{H}(F)$ is a \oplus-sum of F over a particular cube of dimension $n-1$.

High-Degree Indicator Matrix

Definition (High-Degree Indicator Matrix)

We will call $\hat{H}(F)$ High-Degree Indicator Matrix (HDIM).

Computing the HDIM

- Each row or column of $\hat{H}(F)$ is a \oplus-sum of F over a particular cube of dimension $n-1$.
- For one row/column we need 2^{n-1} data and 2^{n-1} time.

High-Degree Indicator Matrix

Definition (High-Degree Indicator Matrix)

We will call $\hat{H}(F)$ High-Degree Indicator Matrix (HDIM).

Computing the HDIM

- Each row or column of $\hat{H}(F)$ is a \oplus-sum of F over a particular cube of dimension $n-1$.
- For one row/column we need 2^{n-1} data and 2^{n-1} time.
- For whole $\hat{H}(F)$ we need full codebook and $n 2^{n-1}$ time.

High-Degree Indicator Matrix

Definition (High-Degree Indicator Matrix)

We will call $\hat{H}(F)$ High-Degree Indicator Matrix (HDIM).

Computing the HDIM

- Each row or column of $\hat{H}(F)$ is a \oplus-sum of F over a particular cube of dimension $n-1$.
- For one row/column we need 2^{n-1} data and 2^{n-1} time.
- For whole $\hat{H}(F)$ we need full codebook and $n 2^{n-1}$ time.
- Neglible memory complexity - n bits to store the sum.

Properties of HDIM

Theorem (Linear transformations and HDIM)

Let μ, η be linear n-bit mappings, F be an n-bit permutation and let $G=\eta \circ F \circ \mu$. Then it holds that

$$
\hat{H}(G)=\eta \times \hat{H}(F) \times\left(\mu^{t}\right)^{-1} .
$$

Properties of HDIM

Theorem (Linear transformations and HDIM)

Let μ, η be linear n-bit mappings, F be an n-bit permutation and let $G=\eta \circ F \circ \mu$. Then it holds that

$$
\hat{H}(G)=\eta \times \hat{H}(F) \times\left(\mu^{t}\right)^{-1} .
$$

- Linear transformations applied to a permutation modify its HDIM in a linear way.
- We will use this Theorem to recover whitening linear layers.

Plan

(1) Introducing HDIM

(2) HDIM in Feistel Networks
(3) Impossible Monomials Attack

4 Division property
© Conclusions

LAT modulo 4 patterns

- Recall the LAT modulo 4 patterns that we have spotted:

4-round Feistel Network with bijective functions

5-round Feistel Network with bijective functions

LAT modulo 4 patterns

- Recall the LAT modulo 4 patterns that we have spotted:
- Can be nicely rephrased in terms of HDIM.

4-round Feistel Network with bijective functions

5-round Feistel Network with bijective functions

HDIM Patterns in Feistel Networks

Theorem

Let F^{r} be r-round Feistel Network with bijective functions. Then

$$
\hat{H}\left(\mathrm{~F}^{4}\right)=\left[\begin{array}{llllll}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & ? & ? & ? \\
0 & 0 & 0 & ? & ? & ? \\
0 & 0 & 0 & ? & ? & ?
\end{array}\right] \quad \hat{H}\left(F^{5}\right)=\left[\begin{array}{llllll}
0 & 0 & 0 & ? & ? & ? \\
0 & 0 & 0 & ? & ? & ? \\
0 & 0 & 0 & ? & ? & ? \\
? & ? & ? & ? & ? & ? \\
? & ? & ? & ? & ? & ? \\
? & ? & ? & ? & ? & ?
\end{array}\right]
$$

Example is given for $n=3$ (6-bit Feistel Network).

Generalization by Number of Rounds

Theorem

- Let F_{d} be a Feistel Network with r rounds and degree d of round functions.

Generalization by Number of Rounds

Theorem

- Let F_{d}^{r} be a Feistel Network with r rounds and degree d of round functions.
- Let $\theta(d, r)=d^{\lfloor r / 2\rfloor-1}+d^{\lceil r / 2\rceil-1}$ be a parameter.

Generalization by Number of Rounds

Theorem

- Let F_{d} be a Feistel Network with r rounds and degree d of round functions.
- Let $\theta(d, r)=d^{\lfloor r / 2\rfloor-1}+d^{\lceil r / 2\rceil-1}$ be a parameter.
- Assume that the round functions are permutations. Then
$\begin{aligned} & \text { - } \hat{H}\left(\mathrm{~F}_{d}^{r}\right)=\left[\begin{array}{ll}\mathbf{0} & \mathbf{0} \\ \mathbf{0} & ?\end{array}\right] \text {, when } \theta(d, r)<2 n . \\ & \text { - } \hat{H}\left(\mathrm{~F}_{d}^{r}\right)=\left[\begin{array}{ll}\mathbf{0} & \text { ? } \\ \text { ? } & \text { ? }\end{array}\right] \text {, when } \theta(d, r-1)<2 n .\end{aligned}$

Generalization by Number of Rounds

Theorem

- Let F_{d}^{r} be a Feistel Network with r rounds and degree d of round functions.
- Let $\theta(d, r)=d^{\lfloor r / 2\rfloor-1}+d^{\lceil r / 2\rceil-1}$ be a parameter.
- Assume that the round functions are permutations. Then
- $\hat{H}\left(F_{d}^{r}\right)=\left[\begin{array}{ll}\mathbf{0} & \mathbf{0} \\ \mathbf{0} & ?\end{array}\right]$, when $\theta(d, r)<2 n$.
- $\hat{H}\left(\mathrm{~F}_{d}^{r}\right)=\left[\begin{array}{ll}0 & \text { ? } \\ \text { ? } & \text { ? }\end{array}\right]$, when $\theta(d, r-1)<2 n$.
- For non-bijective round functions, the results hold for one round less.

Generalization by Number of Rounds

Theorem

- Let F_{d}^{r} be a Feistel Network with r rounds and degree d of round functions.
- Let $\theta(d, r)=d^{\lfloor r / 2\rfloor-1}+d^{\lceil r / 2\rceil-1}$ be a parameter.
- Assume that the round functions are permutations. Then
$\begin{aligned} & \text { - } \hat{H}\left(\mathrm{~F}_{d}^{r}\right)=\left[\begin{array}{ll}\mathbf{0} & \mathbf{0} \\ \mathbf{0} & \text { ? }\end{array}\right] \text {, when } \theta(d, r)<2 n . \\ & \text { - } \hat{H}\left(\mathrm{~F}_{d}^{r}\right)=\left[\begin{array}{ll}\mathbf{0} & \text { ? } \\ ? & ?\end{array}\right] \text {, when } \theta(d, r-1)<2 n .\end{aligned}$
- For non-bijective round functions, the results hold for one round less.

Distinguisher for Feistel Networks: one HDIM row or column is enough.

Generalization by Number of Rounds

Theorem

- Let F_{d}^{r} be a Feistel Network with r rounds and degree d of round functions.
- Let $\theta(d, r)=d^{\lfloor r / 2\rfloor-1}+d^{\lceil r / 2\rceil-1}$ be a parameter.
- Assume that the round functions are permutations. Then
- $\hat{H}\left(F_{d}^{r}\right)=\left[\begin{array}{ll}\mathbf{0} & \mathbf{0} \\ \mathbf{0} & ?\end{array}\right]$, when $\theta(d, r)<2 n$.
- $\hat{H}\left(\mathrm{~F}_{d}^{r}\right)=\left[\begin{array}{ll}0 & \text { ? } \\ \text { ? } & \text { ? }\end{array}\right]$, when $\theta(d, r-1)<2 n$.
- For non-bijective round functions, the results hold for one round less.

Distinguisher for Feistel Networks: one HDIM row or column is enough. Weak compared to known distinguishers for up to 5 rounds, but can attack more rounds when the degree is low.

Proof Idea

- Recall the equation for HDIM:

$$
\hat{H}(F)[i, j]=\bigoplus_{x \in \mathbb{F}_{2}^{2 n}}\left(e_{i} \cdot F(x)\right)\left(e_{j} \cdot x\right)
$$

Proof Idea

- Recall the equation for HDIM:

$$
\hat{H}(F)[i, j]=\bigoplus_{x \in \mathbb{F}_{2}^{2 n}}\left(e_{i} \cdot F(x)\right)\left(e_{j} \cdot x\right)
$$

- Change sum variables:

$$
=\bigoplus_{\alpha \| \gamma \in \mathbb{F}_{2}^{2 n}}\left(e_{i} \cdot g(\alpha, \gamma)\right)\left(e_{j} \cdot h(\alpha, \gamma)\right)
$$

Proof Idea

- Recall the equation for HDIM:

$$
\hat{H}(F)[i, j]=\bigoplus_{x \in \mathbb{F}_{2}^{2 n}}\left(e_{i} \cdot F(x)\right)\left(e_{j} \cdot x\right)
$$

- Change sum variables:

$$
=\bigoplus_{\alpha \| \gamma \in \mathbb{F}_{2}^{2 n}}\left(e_{i} \cdot g(\alpha, \gamma)\right)\left(e_{j} \cdot h(\alpha, \gamma)\right)
$$

- Calculate the degrees of h and g straightforwardly and sum them.

Proof Idea

- Recall the equation for HDIM:

$$
\hat{H}(F)[i, j]=\bigoplus_{x \in \mathbb{F}_{2}^{2 n}}\left(e_{i} \cdot F(x)\right)\left(e_{j} \cdot x\right)
$$

- Change sum variables:

$$
=\bigoplus_{\alpha \| \gamma \in \mathbb{F}_{2}^{2 n}}\left(e_{i} \cdot g(\alpha, \gamma)\right)\left(e_{j} \cdot h(\alpha, \gamma)\right)
$$

- Calculate the degrees of h and g straightforwardly and sum them.
- For bijective round functions, we can get one round more by summing over
 α and β.

Feistel Network with Whitening Linear Layers

The $A F^{r}$ A structure:

- Feistel Network with r rounds and n-bit branches.
- f_{i} : secret and independent random functions.
- whitened with secret affine layers $A_{\text {in }}, A_{\text {out }}$.

Feistel Network with Whitening Linear Layers

The $A F^{r} A$ structure:

- Feistel Network with r rounds and n-bit branches.
- f_{i} : secret and independent random functions.
- whitened with secret affine layers $A_{\text {in }}, A_{\text {out }}$.
Cryptanalysis goals:
- distinguish from random permutation;
- recover the secret components.

Attacking $\mathrm{AF}^{\mathrm{r}} \mathrm{A}$

- Let F be a Feistel Network with r rounds, such that $\hat{H}(F)=\left[\begin{array}{ll}0 & 0 \\ 0 & ?\end{array}\right]$ (e.g. 4 rounds with bijective functions).
- Let $G=\eta \circ F \circ \mu$. That is, G is $A^{r} A$.

Attacking $\mathrm{AF}^{\mathrm{r}} \mathrm{A}$

- Let F be a Feistel Network with r rounds, such that

$$
\hat{H}(F)=\left[\begin{array}{ll}
0 & 0 \\
0 & ?
\end{array}\right] \text { (e.g. } 4 \text { rounds with bijective functions). }
$$

- Let $G=\eta \circ F \circ \mu$. That is, G is $A^{r} A$.
- Then by properties of HDIM we have:

$$
\eta^{-1} \times \hat{H}(G) \times \mu^{t}=\left[\begin{array}{ll}
0 & 0 \\
0 & ?
\end{array}\right] .
$$

Attacking AFr'A

- Let F be a Feistel Network with r rounds, such that

$$
\hat{H}(F)=\left[\begin{array}{ll}
0 & 0 \\
0 & ?
\end{array}\right] \text { (e.g. } 4 \text { rounds with bijective functions). }
$$

- Let $G=\eta \circ F \circ \mu$. That is, G is $A^{r} A$.
- Then by properties of HDIM we have:

$$
\eta^{-1} \times \hat{H}(G) \times \mu^{t}=\left[\begin{array}{ll}
0 & 0 \\
0 & ?
\end{array}\right] .
$$

- Parts of η and μ merge into the Feistel structure, so we have less unknowns and we can solve the system.

Attacking $\mathrm{AF}^{\mathrm{r}} \mathrm{A}$

- Let F be a Feistel Network with r rounds, such that

$$
\hat{H}(F)=\left[\begin{array}{ll}
0 & 0 \\
0 & ?
\end{array}\right] \text { (e.g. } 4 \text { rounds with bijective functions). }
$$

- Let $G=\eta \circ F \circ \mu$. That is, G is ${A F^{r} A \text {. }}^{\text {A }}$
- Then by properties of HDIM we have:

$$
\eta^{-1} \times \hat{H}(G) \times \mu^{t}=\left[\begin{array}{ll}
0 & 0 \\
0 & ?
\end{array}\right] .
$$

- Parts of η and μ merge into the Feistel structure, so we have less unknowns and we can solve the system.
- Distinguisher for $\mathrm{AF}^{\mathrm{r}} \mathrm{A}$ and Partial recovery of linear layers.
- Complexity is dominated by computing HDIM - $n 2^{2 n-1}$.

Attacking one round more

- In some special cases we can attack one more round. Then we will need only that $\hat{H}(F)=\left[\begin{array}{ll}0 & ? \\ ? & ?\end{array}\right]$ (for example, 5 rounds with bijective functions).

Attacking one round more

- In some special cases we can attack one more round. Then we will need only that $\hat{H}(F)=\left[\begin{array}{ll}0 & ? \\ ? & ?\end{array}\right]$ (for example, 5 rounds with bijective functions).
- One of such cases is when the linear layers are inverses of each other $\left(A^{-1} \mathrm{~F}^{\mathrm{r}} \mathrm{A}\right)$.

Attacking one round more

- In some special cases we can attack one more round. Then we will need only that $\hat{H}(F)=\left[\begin{array}{ll}0 & ? \\ ? & ?\end{array}\right]$ (for example, 5 rounds with bijective functions).
- One of such cases is when the linear layers are inverses of each other ($\mathrm{A}^{-1} \mathrm{~F}^{\mathrm{r}} \mathrm{A}$).
- Another possible case is one-sided whitening: $\mathrm{F}^{\mathrm{r}} \mathrm{A}$.

Attacking one round more

- In some special cases we can attack one more round. Then we will need only that $\hat{H}(F)=\left[\begin{array}{ll}0 & ? \\ ? & ?\end{array}\right]$ (for example, 5 rounds with bijective functions).
- One of such cases is when the linear layers are inverses of each other ($\mathrm{A}^{-1} \mathrm{~F}^{\mathrm{r}} \mathrm{A}$).
- Another possible case is one-sided whitening: $\mathrm{F}^{\mathrm{r}} \mathrm{A}$.
- Partial recovery of linear layers for $A^{-1} F^{r} A$ or $F^{r} A$.
- Complexity is dominated by computing HDIM - $n 2^{2 n-1}$.

Plan

(2) HDIM in Feistel Networks
(3) Impossible Monomials Attack

4 Division property
(5) Conclusions

Generalizing to other ANF Monomials

- Previously, we exploited predictable absence of particular terms of degree $n-1$ in the ANFs of some output bits (entries $\left.\hat{H}(F)_{i, j}=0\right)$.

Generalizing to other ANF Monomials

- Previously, we exploited predictable absence of particular terms of degree $n-1$ in the ANFs of some output bits (entries $\left.\hat{H}(F)_{i, j}=0\right)$.
- This is an extreme case, we tried to cover more rounds, but we recovered only surrounding linear layers.

Generalizing to other ANF Monomials

- Previously, we exploited predictable absence of particular terms of degree $n-1$ in the ANFs of some output bits (entries $\left.\hat{H}(F)_{i, j}=0\right)$.
- This is an extreme case, we tried to cover more rounds, but we recovered only surrounding linear layers.
- Consider the case when $\hat{H}(F)=\left[\begin{array}{ll}0 & 0 \\ 0 & ?\end{array}\right]$. There are $3 n^{2}$ impossible terms of degree $n-1$. But there are more impossible terms of lower degree.

Generalizing to other ANF Monomials

- Previously, we exploited predictable absence of particular terms of degree $n-1$ in the ANFs of some output bits (entries $\left.\hat{H}(F)_{i, j}=0\right)$.
- This is an extreme case, we tried to cover more rounds, but we recovered only surrounding linear layers.
- Consider the case when $\hat{H}(F)=\left[\begin{array}{ll}\mathbf{0} & \mathbf{0} \\ \mathbf{0} & ?\end{array}\right]$. There are $3 n^{2}$ impossible terms of degree $n-1$. But there are more impossible terms of lower degree.
- The predictable absence of such terms may be used to recover a secret round function.

Recovery attack on 5-round Feistel Network (1/2)

- Consider a 5-round Feistel Network F with bijective round functions. Let f be the last round function.

Recovery attack on 5-round Feistel Network (1/2)

- Consider a 5-round Feistel Network F with bijective round functions. Let f be the last round function.
- We can prove that there are more than 2^{n} monomials which can't occur in the ANFs on right branch of the 4-round FN.

Recovery attack on 5-round Feistel Network (1/2)

- Consider a 5-round Feistel Network F with bijective round functions. Let f be the last round function.
- We can prove that there are more than 2^{n} monomials which can't occur in the ANFs on right branch of the 4-round FN.
- This gives us information about the last round function f.

Recovery attack on 5-round Feistel Network (2/2)

- We obtain a linear system with 2^{n} unknowns (ANF coefficients of f_{i}) and more than 2^{n} equations.

Recovery attack on 5-round Feistel Network (2/2)

- We obtain a linear system with 2^{n} unknowns (ANF coefficients of f_{i}) and more than 2^{n} equations.
- By solving the system we recover the secret round function f (up to a XOR constant).

Recovery attack on 5-round Feistel Network (2/2)

- We obtain a linear system with 2^{n} unknowns (ANF coefficients of f_{i}) and more than 2^{n} equations.
- By solving the system we recover the secret round function f (up to a XOR constant).
- Complexity is dominated by generating the system and is $O\left(2^{3 n}\right)$.

Generalization by number of rounds

- If the degrees of round functions are low, we can attack more rounds.

Generalization by number of rounds

- If the degrees of round functions are low, we can attack more rounds.

Theorem (Impossible Monomials in Feistel Networks)

Let F be a $2 n$-bit Feistel Network with r rounds and round functions of degree at most d. If $d^{r-2}<n$, then there are at least 2^{n} impossible monomials in the ANFs of right bits of F.

Generalization by number of rounds

- If the degrees of round functions are low, we can attack more rounds.

Theorem (Impossible Monomials in Feistel Networks)

Let F be a $2 n$-bit Feistel Network with r rounds and round functions of degree at most d. If $d^{r-2}<n$, then there are at least 2^{n} impossible monomials in the ANFs of right bits of F.

- Recovery attack when $d^{r-3}<n$. Note that the bound is not tight, the previously described attack on 5 rounds does not satisfy this condition.

Generalization by number of rounds

- If the degrees of round functions are low, we can attack more rounds.

Theorem (Impossible Monomials in Feistel Networks)

Let F be a $2 n$-bit Feistel Network with r rounds and round functions of degree at most d. If $d^{r-2}<n$, then there are at least 2^{n} impossible monomials in the ANFs of right bits of F.

- Recovery attack when $d^{r-3}<n$. Note that the bound is not tight, the previously described attack on 5 rounds does not satisfy this condition.
- Moreover, with low degrees there are less unknowns and we need less impossible monomials.

Plan

(2) HDIM in Feistel Networks
(3) Impossible Monomials Attack

4 Division property
(5) Conclusions

Relation with Division Property

- Division Property is a tool for integral attacks introduced recently by Todo.

Relation with Division Property

- Division Property is a tool for integral attacks introduced recently by Todo.
- Division Property allows to find cubes of dimension $2 n-1$ (or less) over which a given Feistel Network sums to zero.

Relation with Division Property

- Division Property is a tool for integral attacks introduced recently by Todo.
- Division Property allows to find cubes of dimension $2 n-1$ (or less) over which a given Feistel Network sums to zero.
- Such cubes correspond to the absent ANF coefficients of degree $2 n-1$ (or less) which correspond to zero items in HDIM.

Relation with Division Property

- Division Property is a tool for integral attacks introduced recently by Todo.
- Division Property allows to find cubes of dimension $2 n-1$ (or less) over which a given Feistel Network sums to zero.
- Such cubes correspond to the absent ANF coefficients of degree $2 n-1$ (or less) which correspond to zero items in HDIM.
- The results for concrete Feistel Networks obtained by Todo are very similar to ours.

Plan

2 HDIM in Feistel Networks
(3) Impossible Monomials Attack
(4) Division property
(5) Conclusions

Conclusions

Conclusions

Thank you!

