
Optimal First-Order Boolean Masking for
Embeded IoT Devices

Alex Biryukov, Daniel Dinu, Yann Le Corre, Aleksei Udovenko

University of Luxembourg, SnT

November 13, 2017

Outline

1 Introduction

2 Search Algorithm

3 Applications

4 Compositional Security

5 Conclusion

1 / 21

Plan

1 Introduction

2 Search Algorithm

3 Applications

4 Compositional Security

5 Conclusion

1 / 21

Internet of Things

2 / 21

Side Channel Attacks

1Credit: wikipedia
3 / 21

Masking (1/3)

Countermeasure - masking (first-order example):
Represent x ∼ (rx , x

′) such that x = rx ⊕ x ′.
rx is a random bit,
x ′ = x ⊕ rx .

Compute using new representation without leaking x .
Example 1 (XOR):

x ∼ (rx , x
′),

y ∼ (ry , y
′),

x ⊕ y ∼ (rx ⊕ ry , x
′ ⊕ y ′).

Example 2 (AND - Trichina gate):

x ∧ y ∼
(︀
rz , rz ⊕ (rx ∧ ry)⊕ (rx ∧ y)⊕ (x ∧ ry)⊕ (x ∧ y)

)︀
.

4 / 21

Masking (1/3)

Countermeasure - masking (first-order example):
Represent x ∼ (rx , x

′) such that x = rx ⊕ x ′.
rx is a random bit,
x ′ = x ⊕ rx .

Compute using new representation without leaking x .

Example 1 (XOR):

x ∼ (rx , x
′),

y ∼ (ry , y
′),

x ⊕ y ∼ (rx ⊕ ry , x
′ ⊕ y ′).

Example 2 (AND - Trichina gate):

x ∧ y ∼
(︀
rz , rz ⊕ (rx ∧ ry)⊕ (rx ∧ y)⊕ (x ∧ ry)⊕ (x ∧ y)

)︀
.

4 / 21

Masking (1/3)

Countermeasure - masking (first-order example):
Represent x ∼ (rx , x

′) such that x = rx ⊕ x ′.
rx is a random bit,
x ′ = x ⊕ rx .

Compute using new representation without leaking x .
Example 1 (XOR):

x ∼ (rx , x
′),

y ∼ (ry , y
′),

x ⊕ y ∼ (rx ⊕ ry , x
′ ⊕ y ′).

Example 2 (AND - Trichina gate):

x ∧ y ∼
(︀
rz , rz ⊕ (rx ∧ ry)⊕ (rx ∧ y)⊕ (x ∧ ry)⊕ (x ∧ y)

)︀
.

4 / 21

Masking (1/3)

Countermeasure - masking (first-order example):
Represent x ∼ (rx , x

′) such that x = rx ⊕ x ′.
rx is a random bit,
x ′ = x ⊕ rx .

Compute using new representation without leaking x .
Example 1 (XOR):

x ∼ (rx , x
′),

y ∼ (ry , y
′),

x ⊕ y ∼ (rx ⊕ ry , x
′ ⊕ y ′).

Example 2 (AND - Trichina gate):

x ∧ y ∼
(︀
rz , rz ⊕ (rx ∧ ry)⊕ (rx ∧ y)⊕ (x ∧ ry)⊕ (x ∧ y)

)︀
.

4 / 21

Masking (2/3)

First-order masking can be broken using second-order attack.
More shares n → higher-order masking.

Masking AND requires O(n2) operations.
Attack complexity (data and time) grows exponentially.
Some devices can not afford higher-order masking!
Some protection is still desirable.
⇒ Efficient first-order masking is necessary.

5 / 21

Masking (2/3)

First-order masking can be broken using second-order attack.
More shares n → higher-order masking.
Masking AND requires O(n2) operations.
Attack complexity (data and time) grows exponentially.

Some devices can not afford higher-order masking!
Some protection is still desirable.
⇒ Efficient first-order masking is necessary.

5 / 21

Masking (2/3)

First-order masking can be broken using second-order attack.
More shares n → higher-order masking.
Masking AND requires O(n2) operations.
Attack complexity (data and time) grows exponentially.
Some devices can not afford higher-order masking!
Some protection is still desirable.

⇒ Efficient first-order masking is necessary.

5 / 21

Masking (2/3)

First-order masking can be broken using second-order attack.
More shares n → higher-order masking.
Masking AND requires O(n2) operations.
Attack complexity (data and time) grows exponentially.
Some devices can not afford higher-order masking!
Some protection is still desirable.
⇒ Efficient first-order masking is necessary.

5 / 21

Masking (3/3)

Best known first-order expressions?

AND: Trichina gate. 1 random bit and 8 basic operations.
OR:

1 fresh random bit required:

[+]: masks are always "fresh" → easy security proof.
[−]: PRNG cost.

Our goal: find optimal expressions, without randomness if
possible.

6 / 21

Masking (3/3)

Best known first-order expressions?

AND: Trichina gate. 1 random bit and 8 basic operations.
OR: Not studied? Using De Morgan’s law and Trichina gate:
1 random bit and 11 basic operations.

1 fresh random bit required:

[+]: masks are always "fresh" → easy security proof.
[−]: PRNG cost.

Our goal: find optimal expressions, without randomness if
possible.

6 / 21

Masking (3/3)

Best known first-order expressions?

AND: Trichina gate. 1 random bit and 8 basic operations.
OR: 6 basic operations, [Baek and Noh, 2005]

1 fresh random bit required:

[+]: masks are always "fresh" → easy security proof.
[−]: PRNG cost.

Our goal: find optimal expressions, without randomness if
possible.

6 / 21

Masking (3/3)

Best known first-order expressions?

AND: Trichina gate. 1 random bit and 8 basic operations.
OR: 6 basic operations, [Baek and Noh, 2005]

1 fresh random bit required:

[+]: masks are always "fresh" → easy security proof.
[−]: PRNG cost.

Our goal: find optimal expressions, without randomness if
possible.

6 / 21

Plan

1 Introduction

2 Search Algorithm

3 Applications

4 Compositional Security

5 Conclusion

6 / 21

Interface

Algorithm: search for optimal first-order masking expressions.

Inputs:

target Boolean function t. For example, AND:

t(x0, x1, y0, y1) = (x0 ⊕ x1) ∧ (y0 ⊕ y1);

number of output shares m;
set of sensitive functions, e.g. {x0 ⊕ x1, y0 ⊕ y1, t};
set of allowed operations, e.g. {XOR,AND,OR, BIC ,ORN⏟ ⏞

ARM−specific

}.

Outputs:
set of m functions si such that

⨁︀
i si = t;

optimal circuit for computing all si without first-order leakage
of information about sensitive functions.

7 / 21

Interface

Algorithm: search for optimal first-order masking expressions.

Inputs:

target Boolean function t. For example, AND:

t(x0, x1, y0, y1) = (x0 ⊕ x1) ∧ (y0 ⊕ y1);

number of output shares m;
set of sensitive functions, e.g. {x0 ⊕ x1, y0 ⊕ y1, t};
set of allowed operations, e.g. {XOR,AND,OR, BIC ,ORN⏟ ⏞

ARM−specific

}.

Outputs:
set of m functions si such that

⨁︀
i si = t;

optimal circuit for computing all si without first-order leakage
of information about sensitive functions.

7 / 21

Interface

Algorithm: search for optimal first-order masking expressions.

Inputs:

target Boolean function t. For example, AND:

t(x0, x1, y0, y1) = (x0 ⊕ x1) ∧ (y0 ⊕ y1);

number of output shares m;
set of sensitive functions, e.g. {x0 ⊕ x1, y0 ⊕ y1, t};
set of allowed operations, e.g. {XOR,AND,OR, BIC ,ORN⏟ ⏞

ARM−specific

}.

Outputs:
set of m functions si such that

⨁︀
i si = t;

optimal circuit for computing all si without first-order leakage
of information about sensitive functions.

7 / 21

The Algorithm (1/3)

()variables: a, b, c , . . .

(a⊕ b)(¬a) . . .

cost = 0

(¬a,¬a⊕ b) (¬a,¬a⊕ c) . . . (¬a, a⊕ b) . . .

cost = 1

cost = 2

.

A breadth-first search on sequences of operations.
A sequence is good if it contains m functions summing to t.
Several cut-offs involved.

8 / 21

The Algorithm (2/3)

()variables: a, b, c , . . .

(a⊕ b)(¬a) . . .

cost = 0

(¬a,¬a⊕ b) (¬a,¬a⊕ c) . . . (¬a, a⊕ b) . . .

cost = 1

cost = 2

.

Cut-offs:
First-order leakage check. Leaking sequences are dropped.
Two sequences with the same set of functions are merged.
Exploiting share symmetries (swaps, etc.).

9 / 21

The Algorithm (3/3)

Example of a discovered sequence:
¬y0,
x0 ∨ ¬y1,
x0 ∧ y0,
(x0 ∧ y0)⊕ (x0 ∨ ¬y1),
x1 ∨ ¬y1,
x1 ∧ y0,
(x1 ∧ y0)⊕ (x1 ∨ ¬y1).

Observe that the sequence contains
s0 = (x0 ∧ y0)⊕ (x0 ∨ ¬y1),
s1 = (x1 ∧ y0)⊕ (x1 ∨ ¬y1),
such that
s0 ⊕ s1 = (x0 ⊕ x1) ∧ (y0 ⊕ y1) = t is the target AND function.

10 / 21

The Algorithm (3/3)

Example of a discovered sequence:
¬y0,
x0 ∨ ¬y1,
x0 ∧ y0,
(x0 ∧ y0)⊕ (x0 ∨ ¬y1),
x1 ∨ ¬y1,
x1 ∧ y0,
(x1 ∧ y0)⊕ (x1 ∨ ¬y1).

Observe that the sequence contains
s0 = (x0 ∧ y0)⊕ (x0 ∨ ¬y1),
s1 = (x1 ∧ y0)⊕ (x1 ∨ ¬y1),
such that
s0 ⊕ s1 = (x0 ⊕ x1) ∧ (y0 ⊕ y1) = t is the target AND function.

10 / 21

Results

SecAnd (secure AND):
z0 = (x1 ∧ y1)⊕ (x1 ∨ ¬y2),
z1 = (x2 ∧ y1)⊕ (x2 ∨ ¬y2),
Cost: 7 basic / 6 on ARM (versus 8 Trichina gate).

SecOr (secure OR):
z0 = (x1 ∧ y1)⊕ (x1 ∨ y2),
z1 = (x2 ∨ y1)⊕ (x2 ∧ y2),
Cost: 6 basic / 6 on ARM (versus 11 Trichina gate + De Morgan’s
law).

No random bits required!

11 / 21

Results

SecAnd (secure AND):
z0 = (x1 ∧ y1)⊕ (x1 ∨ ¬y2),
z1 = (x2 ∧ y1)⊕ (x2 ∨ ¬y2),
Cost: 7 basic / 6 on ARM (versus 8 Trichina gate).

SecOr (secure OR):
z0 = (x1 ∧ y1)⊕ (x1 ∨ y2),
z1 = (x2 ∨ y1)⊕ (x2 ∧ y2),
Cost: 6 basic / 6 on ARM (versus 11 Trichina gate + De Morgan’s
law).

No random bits required!

11 / 21

Plan

1 Introduction

2 Search Algorithm

3 Applications

4 Compositional Security

5 Conclusion

11 / 21

Applications

We applied new masking expressions to improve several algorithms:

Masked Modular Addition/Subtraction by Coron et al. from
FSE 2013.
Masked top 3 64-bit block ciphers in the FELICS
benchmarking framework:

Speck
Simon
Rectangle

All implementations were checked using Welch’s t-test to
verify absence of leakage (using simulated traces).
Just a proof-of-concept to compare performance.
More work is needed for deployment-ready implementations.

12 / 21

Applications

We applied new masking expressions to improve several algorithms:

Masked Modular Addition/Subtraction by Coron et al. from
FSE 2013.
Masked top 3 64-bit block ciphers in the FELICS
benchmarking framework:

Speck
Simon
Rectangle

All implementations were checked using Welch’s t-test to
verify absence of leakage (using simulated traces).
Just a proof-of-concept to compare performance.
More work is needed for deployment-ready implementations.

12 / 21

Kogge-Stone Addition/Subtraction

Coron et al. at FSE 2013 proposed masked modular addition
algorithm based on the Kogge-Stone adder.
We used our new expressions together with other
modifications.

Expr.
Time (cycles) Code size (bytes)

Addition Subtraction Addition Subtraction
rolled

best known 275 388 292 416
our 228 333 232 332
gain 17% 14% 21% 20%

unrolled
best known 203 296 544 812
our 173 241 480 692
gain 15% 19% 12% 15%

13 / 21

Speck

Speck: ARX block cipher from NSA.
Speck-64/128: 64-bit block, 128-bit key, 27 rounds.

Expr.
Time (cycles) Code size (bytes)

Enc Dec Enc Dec
rolled adder

best known 7131 11368 340 488
our 5686 8258 272 400
gain 21% 27% 20% 18%

unrolled adder
best known 4945 7431 588 876
our 4666 6188 536 712
gain 6% 17% 9% 19%

14 / 21

Simon

Simon: AndRX block cipher from NSA.
Simon-64/128: 64-bit block, 128-bit key, 44 rounds.

Expr.
Time (cycles) Code size (bytes)

Enc Dec Enc Dec
best known 1736 1737 152 156
our 1648 1649 136 140
gain 5% 5% 27% 25%

15 / 21

Rectangle

RECTANGLE: bit-sliced block cipher from academia (Zhang
et al.).
RECTANGLE-64/128: 64-bit block, 128-bit key, 25 rounds.

Expr.
Time (cycles) Code size (bytes)

Enc Dec Enc Dec
best known 3661 3442 632 444
our 2584 2954 564 372
gain 19% 14% 11% 16%

16 / 21

First-Order Masking Penalty

17 / 21

Plan

1 Introduction

2 Search Algorithm

3 Applications

4 Compositional Security

5 Conclusion

17 / 21

Compositional Security (1/3)

Is it always secure to compose our SecAnd / SecOr operations?

Unfortunately, no! A simple counterexample by a reviewer:

(x ∨ y) ∧ y .

Using our expressions to mask this circuit results in a first-order
leakage.
Problem: dependent input masks to SecAnd.
Solution: ... remask! But not after each operation.

18 / 21

Compositional Security (1/3)

Is it always secure to compose our SecAnd / SecOr operations?

Unfortunately, no! A simple counterexample by a reviewer:

(x ∨ y) ∧ y .

Using our expressions to mask this circuit results in a first-order
leakage.
Problem: dependent input masks to SecAnd.

Solution: ... remask! But not after each operation.

18 / 21

Compositional Security (1/3)

Is it always secure to compose our SecAnd / SecOr operations?

Unfortunately, no! A simple counterexample by a reviewer:

(x ∨ y) ∧ y .

Using our expressions to mask this circuit results in a first-order
leakage.
Problem: dependent input masks to SecAnd.
Solution: ... remask! But not after each operation.

18 / 21

Compositional Security (2/3)

How often to remask?

Consider for example SecAnd:

(z ′, rz) = SecAnd((x ′, rx), (y
′, ry)),

After simplification, we have:

z ′ = z ⊕ rxy ⊕ ry ⊕ 1,
rz = rxy ⊕ ry ⊕ 1.

Observe that rz is linear in rx and ry . However, the expression
depends on the secret variable y .
Similar proposition holds for SecOr as well.

19 / 21

Compositional Security (2/3)

How often to remask?

Consider for example SecAnd:

(z ′, rz) = SecAnd((x ′, rx), (y
′, ry)),

After simplification, we have:

z ′ = z ⊕ rxy ⊕ ry ⊕ 1,
rz = rxy ⊕ ry ⊕ 1.

Observe that rz is linear in rx and ry . However, the expression
depends on the secret variable y .
Similar proposition holds for SecOr as well.

19 / 21

Compositional Security (3/3)

We can track the coefficient vector of each share through the
circuit.
For example:

Consider 4 random shares r0, . . . , r3.
Consider the random mask: r0 ⊕ xr1 ⊕ r2.
We represent it as (1, ?, 1, 0).

SecAnd / SecOr are secure if the input vectors are
independent.
If the known vector coefficients of the shares match, we
remask the shares before the operation.
Otherwise masks are guaranteed to be independent.
Requires case-by-case study - future work.

20 / 21

Plan

1 Introduction

2 Search Algorithm

3 Applications

4 Compositional Security

5 Conclusion

20 / 21

Conclusion

New, optimal expressions for first-order masking.
Decrease penalty of protecting lightweight block ciphers.

Open problems:

Optimal remasking frequency?

Thank you!

21 / 21

	Introduction
	Search Algorithm
	Applications
	Compositional Security
	Conclusion

