Optimal First-Order Boolean Masking for Embeded loT Devices

Alex Biryukov, Daniel Dinu, Yann Le Corre, Aleksei Udovenko

University of Luxembourg, SnT
November 13, 2017

Outline

1 Introduction

2 Search Algorithm

3 Applications

4 Compositional Security

5 Conclusion

Plan

1 Introduction

2 Search Algorithm

3 Applications

4 Compositional Security

5 Conclusion

Internet of Things

Side Channel Attacks

Cryptographic device
(e.g., smart card and reader)

[^0]
Masking (1/3)

Countermeasure - masking (first-order example):

- Represent $x \sim\left(r_{x}, x^{\prime}\right)$ such that $x=r_{x} \oplus x^{\prime}$.
- r_{x} is a random bit,
- $x^{\prime}=x \oplus r_{x}$.

Masking (1/3)

Countermeasure - masking (first-order example):

- Represent $x \sim\left(r_{x}, x^{\prime}\right)$ such that $x=r_{x} \oplus x^{\prime}$.
- r_{x} is a random bit,
- $x^{\prime}=x \oplus r_{x}$.
- Compute using new representation without leaking x.

Masking (1/3)

Countermeasure - masking (first-order example):

- Represent $x \sim\left(r_{x}, x^{\prime}\right)$ such that $x=r_{x} \oplus x^{\prime}$.
- r_{x} is a random bit,
- $x^{\prime}=x \oplus r_{x}$.
- Compute using new representation without leaking x.
- Example 1 (XOR):

$$
\begin{aligned}
x & \sim\left(r_{x}, x^{\prime}\right) \\
y & \sim\left(r_{y}, y^{\prime}\right) \\
x \oplus y & \sim\left(r_{x} \oplus r_{y}, x^{\prime} \oplus y^{\prime}\right)
\end{aligned}
$$

Masking (1/3)

Countermeasure - masking (first-order example):

- Represent $x \sim\left(r_{x}, x^{\prime}\right)$ such that $x=r_{x} \oplus x^{\prime}$.
- r_{x} is a random bit,
- $x^{\prime}=x \oplus r_{x}$.

■ Compute using new representation without leaking x.

- Example 1 (XOR):

$$
\begin{aligned}
x & \sim\left(r_{x}, x^{\prime}\right), \\
y & \sim\left(r_{y}, y^{\prime}\right), \\
x \oplus y & \sim\left(r_{x} \oplus r_{y}, x^{\prime} \oplus y^{\prime}\right)
\end{aligned}
$$

■ Example 2 (AND - Trichina gate):

$$
x \wedge y \sim\left(r_{z}, r_{z} \oplus\left(r_{x} \wedge r_{y}\right) \oplus\left(r_{x} \wedge y\right) \oplus\left(x \wedge r_{y}\right) \oplus(x \wedge y)\right)
$$

Masking (2/3)

■ First-order masking can be broken using second-order attack.

- More shares $n \rightarrow$ higher-order masking.

Masking (2/3)

■ First-order masking can be broken using second-order attack.

- More shares $n \rightarrow$ higher-order masking.
- Masking AND requires $O\left(n^{2}\right)$ operations.
- Attack complexity (data and time) grows exponentially.

Masking (2/3)

■ First-order masking can be broken using second-order attack.

- More shares $n \rightarrow$ higher-order masking.
- Masking AND requires $O\left(n^{2}\right)$ operations.
- Attack complexity (data and time) grows exponentially.

■ Some devices can not afford higher-order masking!
■ Some protection is still desirable.

Masking (2/3)

■ First-order masking can be broken using second-order attack.

- More shares $n \rightarrow$ higher-order masking.
- Masking AND requires $O\left(n^{2}\right)$ operations.
- Attack complexity (data and time) grows exponentially.

■ Some devices can not afford higher-order masking!

- Some protection is still desirable.

■ \Rightarrow Efficient first-order masking is necessary.

Masking (3/3)

Best known first-order expressions?

Masking (3/3)

Best known first-order expressions?

- AND: Trichina gate. 1 random bit and 8 basic operations.

■ OR: Not studied? Using De Morgan's law and Trichina gate: 1 random bit and 11 basic operations.

Masking (3/3)

Best known first-order expressions?

- AND: Trichina gate. 1 random bit and 8 basic operations.
- OR: 6 basic operations, [Baek and Noh, 2005]

Masking (3/3)

Best known first-order expressions?

- AND: Trichina gate. 1 random bit and 8 basic operations.
- OR: 6 basic operations, [Baek and Noh, 2005]

1 fresh random bit required:
■ [+]: masks are always "fresh" \rightarrow easy security proof.

- [-]: PRNG cost.

Our goal: find optimal expressions, without randomness if possible.

Plan

1 Introduction

2. Search Algorithm

3 Applications

4 Compositional Security

5 Conclusion

Interface

Algorithm: search for optimal first-order masking expressions.

Interface

Algorithm: search for optimal first-order masking expressions.
Inputs:

- target Boolean function t. For example, AND:

$$
t\left(x_{0}, x_{1}, y_{0}, y_{1}\right)=\left(x_{0} \oplus x_{1}\right) \wedge\left(y_{0} \oplus y_{1}\right)
$$

- number of output shares m;
- set of sensitive functions, e.g. $\left\{x_{0} \oplus x_{1}, y_{0} \oplus y_{1}, t\right\}$;

■ set of allowed operations, e.g. $\{X O R, A N D, O R, \underbrace{B I C, O R N}_{A R M-\text { specific }}\}$.

Interface

Algorithm: search for optimal first-order masking expressions.

Inputs:

- target Boolean function t. For example, AND:

$$
t\left(x_{0}, x_{1}, y_{0}, y_{1}\right)=\left(x_{0} \oplus x_{1}\right) \wedge\left(y_{0} \oplus y_{1}\right)
$$

- number of output shares m;

■ set of sensitive functions, e.g. $\left\{x_{0} \oplus x_{1}, y_{0} \oplus y_{1}, t\right\}$;
■ set of allowed operations, e.g. $\{X O R, A N D, O R, \underbrace{B I C, O R N}_{A R M-\text { specific }}\}$.

Outputs:

- set of m functions s_{i} such that $\bigoplus_{i} s_{i}=t$;
- optimal circuit for computing all s_{i} without first-order leakage of information about sensitive functions.

The Algorithm (1/3)

- A breadth-first search on sequences of operations.
- A sequence is good if it contains m functions summing to t.

■ Several cut-offs involved.

The Algorithm (2/3)

Cut-offs:

- First-order leakage check. Leaking sequences are dropped.
- Two sequences with the same set of functions are merged.
- Exploiting share symmetries (swaps, etc.).

The Algorithm (3/3)

Example of a discovered sequence:
$\neg y_{0}$,
$x_{0} \vee \neg y_{1}$,
$x_{0} \wedge y_{0}$,
$\left(x_{0} \wedge y_{0}\right) \oplus\left(x_{0} \vee \neg y_{1}\right)$,
$x_{1} \vee \neg y_{1}$,
$x_{1} \wedge y_{0}$,
$\left(x_{1} \wedge y_{0}\right) \oplus\left(x_{1} \vee \neg y_{1}\right)$.

The Algorithm (3/3)

Example of a discovered sequence:
$\neg y_{0}$,
$x_{0} \vee \neg y_{1}$,
$x_{0} \wedge y_{0}$,
$\left(x_{0} \wedge y_{0}\right) \oplus\left(x_{0} \vee \neg y_{1}\right)$,
$x_{1} \vee \neg y_{1}$,
$x_{1} \wedge y_{0}$,
$\left(x_{1} \wedge y_{0}\right) \oplus\left(x_{1} \vee \neg y_{1}\right)$.
Observe that the sequence contains
$s_{0}=\left(x_{0} \wedge y_{0}\right) \oplus\left(x_{0} \vee \neg y_{1}\right)$,
$s_{1}=\left(x_{1} \wedge y_{0}\right) \oplus\left(x_{1} \vee \neg y_{1}\right)$,
such that
$s_{0} \oplus s_{1}=\left(x_{0} \oplus x_{1}\right) \wedge\left(y_{0} \oplus y_{1}\right)=t$ is the target AND function.

Results

SecAnd (secure AND):
$z_{0}=\left(x_{1} \wedge y_{1}\right) \oplus\left(x_{1} \vee \neg y_{2}\right)$,
$z_{1}=\left(x_{2} \wedge y_{1}\right) \oplus\left(x_{2} \vee \neg y_{2}\right)$,
Cost: 7 basic / 6 on ARM (versus 8 Trichina gate).
SecOr (secure OR):
$z_{0}=\left(x_{1} \wedge y_{1}\right) \oplus\left(x_{1} \vee y_{2}\right)$,
$z_{1}=\left(x_{2} \vee y_{1}\right) \oplus\left(x_{2} \wedge y_{2}\right)$,
Cost: 6 basic / 6 on ARM (versus 11 Trichina gate + De Morgan's law).

Results

SecAnd (secure AND):
$z_{0}=\left(x_{1} \wedge y_{1}\right) \oplus\left(x_{1} \vee \neg y_{2}\right)$,
$z_{1}=\left(x_{2} \wedge y_{1}\right) \oplus\left(x_{2} \vee \neg y_{2}\right)$,
Cost: 7 basic / 6 on ARM (versus 8 Trichina gate).
SecOr (secure OR):
$z_{0}=\left(x_{1} \wedge y_{1}\right) \oplus\left(x_{1} \vee y_{2}\right)$,
$z_{1}=\left(x_{2} \vee y_{1}\right) \oplus\left(x_{2} \wedge y_{2}\right)$,
Cost: 6 basic / 6 on ARM (versus 11 Trichina gate + De Morgan's law).

No random bits required!

Plan

1 Introduction

2 Search Algorithm

3 Applications

4 Compositional Security

5 Conclusion

Applications

We applied new masking expressions to improve several algorithms:

- Masked Modular Addition/Subtraction by Coron et al. from FSE 2013.
- Masked top 3 64-bit block ciphers in the FELICS benchmarking framework:
- Speck
- Simon
- Rectangle

Applications

We applied new masking expressions to improve several algorithms:

- Masked Modular Addition/Subtraction by Coron et al. from FSE 2013.
- Masked top 3 64-bit block ciphers in the FELICS benchmarking framework:
- Speck
- Simon
- Rectangle
- All implementations were checked using Welch's t-test to verify absence of leakage (using simulated traces).
- Just a proof-of-concept to compare performance.
- More work is needed for deployment-ready implementations.

Kogge-Stone Addition/Subtraction

■ Coron et al. at FSE 2013 proposed masked modular addition algorithm based on the Kogge-Stone adder.

- We used our new expressions together with other modifications.

Expr.	Time (cycles)		Code size (bytes)	
	Addition	Subtraction	Addition	Subtraction
rolled				
best known	275	388	292	416
our	228	333	232	332
gain	$\mathbf{1 7 \%}$	$\mathbf{1 4 \%}$	$\mathbf{2 1 \%}$	$\mathbf{2 0 \%}$
unrolled				
best known	203	296	544	812
our	173	241	480	692
gain	$\mathbf{1 5 \%}$	$\mathbf{1 9 \%}$	$\mathbf{1 2 \%}$	$\mathbf{1 5 \%}$

Speck

- Speck: ARX block cipher from NSA.

■ Speck-64/128: 64-bit block, 128-bit key, 27 rounds.

Expr.	Time (cycles)		Code size (bytes)	
	Enc	Dec	Enc	Dec
rolled adder				
best known	7131	11368	340	488
our	5686	8258	272	400
gain	$\mathbf{2 1 \%}$	$\mathbf{2 7 \%}$	$\mathbf{2 0 \%}$	$\mathbf{1 8 \%}$
unrolled adder				
best known	4945	7431	588	876
our	4666	6188	536	712
gain	$\mathbf{6 \%}$	$\mathbf{1 7 \%}$	$\mathbf{9 \%}$	$\mathbf{1 9 \%}$

Simon

- Simon: AndRX block cipher from NSA.

■ Simon-64/128: 64-bit block, 128-bit key, 44 rounds.

Expr.	Time (cycles)		Code size (bytes)	
	Enc	Dec	Enc	Dec
best known	1736	1737	152	156
our	1648	1649	136	140
gain	$\mathbf{5 \%}$	$\mathbf{5 \%}$	$\mathbf{2 7 \%}$	$\mathbf{2 5 \%}$

Rectangle

- RECTANGLE: bit-sliced block cipher from academia (Zhang et al.).
■ RECTANGLE-64/128: 64-bit block, 128-bit key, 25 rounds.

Expr.	Time (cycles)		Code size (bytes)	
	Enc	Dec	Enc	Dec
best known	3661	3442	632	444
our	2584	2954	564	372
gain	$\mathbf{1 9 \%}$	$\mathbf{1 4 \%}$	$\mathbf{1 1 \%}$	$\mathbf{1 6 \%}$

First-Order Masking Penalty

Plan

1 Introduction

2 Search Algorithm

3 Applications

4 Compositional Security

5 Conclusion

Compositional Security (1/3)

Is it always secure to compose our SecAnd / SecOr operations?

Compositional Security (1/3)

Is it always secure to compose our SecAnd / SecOr operations?
Unfortunately, no! A simple counterexample by a reviewer:

$$
(x \vee y) \wedge y
$$

Using our expressions to mask this circuit results in a first-order leakage.
Problem: dependent input masks to SecAnd.

Compositional Security ($1 / 3$)

Is it always secure to compose our SecAnd / SecOr operations?
Unfortunately, no! A simple counterexample by a reviewer:

$$
(x \vee y) \wedge y
$$

Using our expressions to mask this circuit results in a first-order leakage.
Problem: dependent input masks to SecAnd.
Solution: ... remask! But not after each operation.

Compositional Security (2/3)

How often to remask?

Compositional Security (2/3)

How often to remask?
Consider for example SecAnd:

$$
\left(z^{\prime}, r_{z}\right)=\operatorname{Sec} A n d\left(\left(x^{\prime}, r_{x}\right),\left(y^{\prime}, r_{y}\right)\right)
$$

After simplification, we have:

$$
\begin{aligned}
& z^{\prime}=z \oplus r_{x} y \oplus r_{y} \oplus 1, \\
& r_{z}=r_{x} y \oplus r_{y} \oplus 1
\end{aligned}
$$

Observe that r_{z} is linear in r_{x} and r_{y}. However, the expression depends on the secret variable y. Similar proposition holds for SecOr as well.

Compositional Security (3/3)

■ We can track the coefficient vector of each share through the circuit.

- For example:
- Consider 4 random shares r_{0}, \ldots, r_{3}.
- Consider the random mask: $r_{0} \oplus x r_{1} \oplus r_{2}$.
- We represent it as (1, ?, 1,0).
- SecAnd / SecOr are secure if the input vectors are independent.
- If the known vector coefficients of the shares match, we remask the shares before the operation.
■ Otherwise masks are guaranteed to be independent.
- Requires case-by-case study - future work.

Plan

1 Introduction

2 Search Algorithm

3 Applications

4 Compositional Security

5 Conclusion

Conclusion

■ New, optimal expressions for first-order masking.

- Decrease penalty of protecting lightweight block ciphers.

Open problems:

- Optimal remasking frequency?

Thank you!

[^0]: ${ }^{1}$ Credit: wikipedia

