SPARX: A Family of ARX-based Lightweight Block Ciphers with Provable Bounds

Daniel Dinu, Léo Perrin, <u>Aleksei Udovenko</u>, Vesselin Velichkov, Johann Großschädl, Alex Biryukov

SnT, University of Luxembourg

https://www.cryptolux.org

March 9, 2017 Grande Region Security and Reliability Day

Introduction	
000	

Introducing the SPARX family of block ciphers

• Lightweight in software: suitable for IoT.

- Lightweight in software: suitable for IoT.
- Resilient to SCA.

- Lightweight in software: suitable for IoT.
- Resilient to SCA.
- Provable differential/linear bounds.

- Lightweight in software: suitable for IoT.
- Resilient to SCA.
- Provable differential/linear bounds.
- First such ARX-based ciphers!

Description of SPARX

Implementation

Conclusion

Efficiency of the SPARX Ciphers

Dank	Ciphor	Block	Key	Scenario 1	Security
Ndlik			size	FOM	margin
1	Speck	64	128	5.0	27 %
2	Chaskey-LTS	128	128	5.0	42 %
3	Simon	64	128	6.9	32 %
4	RECTANGLE	64	128	7.8	28 %
5	LEA	128	128	8.0	33 %
6	Sparx	<mark>6</mark> 4	128	8.6	38 %
7	Sparx	128	128	12.9	31 %
8	HIGHT	64	128	14.1	19 %
9	AES	128	128	15.3	30 %
10	Fantomas	128	128	17.2	?? %

(FELICS framework, block ciphers with key size at least 128 bits)

Cryptolux Team

Description of SPARX

Implementation

Conclusion

Outline

1 Introduction

- 2 Description of SPARX
- 3 Implementation
- 4 Conclusion

Description of SPARX

Implementation

Conclusion

Plan

Introduction
Block Ciphers
Design Strategies

2 Description of SPARX

3 Implementation

4 Conclusion

Description of SPARX

Implementation

Conclusion

Implementation

Conclusion

Block Ciphers

 Primitive: must be used in modes (authenticated encryption).

Implementation

Conclusion

- Primitive: must be used in modes (authenticated encryption).
- 2 Modes have security proofs.

Implementation

Conclusion

- Primitive: must be used in modes (authenticated encryption).
- 2 Modes have security proofs.
- **3** BCs may have security proofs but only against some attacks.

- Primitive: must be used in modes (authenticated encryption).
- **2** Modes have security proofs.
- **3** BCs may have security proofs but only against some attacks.
- 4 \Rightarrow BC is the weakest part.

Introduction	
000	

 \mathbf{S} \mathbf{S} S S

 \mathbf{S} S \mathbf{S}

 \mathbf{S} S \mathbf{S} \mathbf{S}

S S S

S

 \mathbf{S}

Description of SPARX

 \leftrightarrow

÷

Implementation

Conclusion

Description of SPARX

Implementation

Conclusion

S-Box Based

Pros.

 Easy security argument (wide trail strategy).

Cons.

- Might store "big" table.
- Vulnerable to side-channel attacks.

Description of SPARX

Implementation

Conclusion

ks.

S-Box Based

SSS SSS

SSS

Pros.

 Easy security argument (wide trail strategy).

(

Cons.

- Might store "big" table.
- Vulnerable to side-channel attacks.

ARX Based

Pros.

- Lightweight implementations.
- Less vulnerable to side-channel attacks.

Cons.

Security hard to justify.

Conclusion

How can we take the best of both worlds?

Conclusion

How can we take the best of both worlds?

Introducing the SPARX family

- ARX-based...
 - Lightweight in software.
 - Resilience to SCA.

Conclusion

How can we take the best of both worlds?

Introducing the SPARX family

- ARX-based...
 - Lightweight in software.
 - Resilience to SCA.
- Substitution-Permutation Networks
 - Provable differential/linear bounds.
 - First such ARX-based ciphers!

Conclusion

How can we take the best of both worlds?

Introducing the SPARX family

- ARX-based...
 - Lightweight in software.
 - Resilience to SCA.
- Substitution-Permutation Networks
 - Provable differential/linear bounds.
 - First such ARX-based ciphers!

Substitution-Permutation, ARX-Based \implies SPARX

Description of SPARX

Implementation

Conclusion

Plan

- 2 Description of SPARX
 - High Level View of SPARX
 - ARX-Boxes
 - Security Analysis
- 3 Implementation

4 Conclusion

Description of SPARX

Implementation

Conclusion

High Level View

SPARX family of block ciphers

- Designed using a long trail strategy (our contribution).
- 64 or 128 bit block, 128 or 256 bit key.
- Only 16-bit operations: $\ll i$, \oplus , \boxplus .

Description of SPARX

Implementation

Conclusion

ARX-Boxes

SPECKEY

- 1 Start from SPECK-32
- 2 XOR key in full state (Markov assumption)
- 3 Find best trails

SPECKEY

Description of SPARX

Implementation

Conclusion

ARX-Boxes

SPECKEY

- 1 Start from SPECK-32
- 2 XOR key in full state (Markov assumption)
- 3 Find best trails

Parameter Search

- Rotations 7, -2
- Second best crypto properties, lightest
- NSA design strategy?

SPECKEY

Introduction	
000	

Implementation

Conclusion

Notations

Description of SPARX

Implementation

Conclusion

High level view

Round function of SPARX.

Description of SPARX

Implementation

Conclusion

SPARX-64/128

Cryptolux Team

SPARX: A Family of ARX-based Lightweight Block Ciphers

11 / 18

Description of SPARX

Implementation

Conclusion

SPARX-128/128 and SPARX-128/256

Step Function.

 \mathcal{L}' .

Introduction	
000	

Implementation

Conclusion

Security

Long Trail Argument

 $P[\text{any diff. trail covering at least 5 steps}] < 2^{-n}$

Introduction	
000	

Implementation

Conclusion

Security

Long Trail Argument

 $P[\text{any diff. trail covering at least 5 steps}] < 2^{-n}$

Integral Attacks

Todo's division property: distinguishers for 4-5 steps.

Introduction	
000	

Implementation

Conclusion

Security

Long Trail Argument

 $P[\text{any diff. trail covering at least 5 steps}] < 2^{-n}$

Integral Attacks

Todo's division property: distinguishers for 4-5 steps.

n/k	64/128	128/128	128 /256
rounds attacked/total	15/24	22/32	24/40
security margin	38 %	31 %	40 %

"Attack" means recovering secret key faster than exhaustive search.

Cryptolux Team

SPARX: A Family of ARX-based Lightweight Block Ciphers

Plan

Description of SPARX

Implementation

Conclusion

- 2 Description of SPARX
- 3 Implementation
 - Methodology
 - Results

4 Conclusion

Implementation • ○ ○ Conclusion

Benchmarking

https://www.cryptolux.org/index.php/FELICS

- Fair Evaluation of Lightweight Cryptographic Systems
- 8-bit ATMEL AVR ; 16-bit TI MSP ; 32-bit ARM Cortex-M3
- Usage scenarios (e.g. CBC encryption of 128 bytes)
- Extracts RAM usage, ROM usage, # CPU cycles.

Implementation • ○ ○

Benchmarking

https://www.cryptolux.org/index.php/FELICS

- Fair Evaluation of Lightweight Cryptographic Systems
- 8-bit ATMEL AVR ; 16-bit TI MSP ; 32-bit ARM Cortex-M3
- Usage scenarios (e.g. CBC encryption of 128 bytes)
- Extracts RAM usage, ROM usage, # CPU cycles.
- Figure Of Merit aggregates: all metrics accross all platforms for the best implementations of one algorithm.

Description of SPARX

Implementation

Conclusion

Efficiency of the SPARX Ciphers

Dank	Rank Cipher		Key	Scenario 1	Security
Nalik			size	FOM	margin
1	Speck	64	128	5.0	27 %
2	Chaskey-LTS	128	128	5.0	42 %
3	Simon	64	128	6.9	32 %
4	RECTANGLE	64	128	7.8	28 %
5	LEA	128	128	8.0	33 %
6	Sparx	<mark>6</mark> 4	128	8.6	38 %
7	Sparx	128	128	12.9	31 %
8	HIGHT	64	128	14.1	19 %
9	AES	128	128	15.3	30 %
10	Fantomas	128	128	17.2	?? %

(FELICS framework, block ciphers with key size at least 128 bits)

Cryptolux Team

Description of SPARX

Implementation

Conclusion

Efficiency of the SPARX Ciphers

Pank	Ciphor	Block	Key	Scenario 1	Security
Ndlik	Cipiter	size	size	FOM	margin
_	Speck	64	128	5.0	27 %
_	Chaskey-LTS	128	128	5.0	42 %
_	Simon	64	128	6.9	32 %
1	RECTANGLE	64	128	7.8	28 %
_	LEA	128	128	8.0	33 %
2	Sparx	<mark>6</mark> 4	128	8.6	38 %
3	Sparx	128	128	12.9	31 %
_	HIGHT	64	128	14.1	19 %
4	AES	128	128	15.3	30 %
5	Fantomas	128	128	17.2	?? %

(FELICS framework, block ciphers with key size at least 128 bits)

Gray: designers did not provide differential/linear bounds.

Cryptolux Team

SPARX: A Family of ARX-based Lightweight Block Ciphers

Description of SPARX

Implementation

Conclusion

Flexibility of the Implementation

	Block		AVR			MSP			ARM	
Implem.	size	Time	Code	RAM	Time	Code	RAM	Time	Code	RAM
	[bits]	[cyc.]	[B]	[B]	[cyc.]	[B]	[B]	[cyc.]	[B]	[B]
1-step ro		1789	248	2	1088	166	14	1370	176	28
1-step un	64	1641	424	1	907	250	12	1100	348	24
2-steps ro	04	1677	356	2	1034	232	10	1331	304	28
2-steps un		1529	712	1	853	404	8	932	644	24
1-step ro		4553	504	11	2809	300	26	3463	348	44
1-step un	100	4165	1052	10	2353	584	24	2784	884	40
2-steps ro	120	4345	720	11	2593	432	18	3399	620	40
2-steps un		3957	1820	10	2157	1004	16	2377	1692	36

"ro": rolled ; "un": unrolled.

Cryptolux Team

SPARX: A Family of ARX-based Lightweight Block Ciphers

Description of SPARX

Implementation

Conclusion

Plan

1 Introduction

- 2 Description of SPARX
- 3 Implementation
- 4 ConclusionWrapping up!

Description of SPARX

Implementation

Conclusion • 0

Conclusion (1/2)

The SPARX ciphers are:

- 1 lightweight and SCA-secure as ARX-based ciphers,
- 2 provably secure against some attacks as SPNs (the first!),
- **3** flexible: different implementation trade-offs are possible.

Description of SPARX

Implementation

Conclusion

Conclusion (2/2)

- Visit https://www.cryptolux.org/index.php/SPARX
- Check https://eprint.iacr.org/2016/984
- Study the SPARX ciphers!

Description of SPARX

Implementation

Conclusion

Conclusion (2/2)

- Visit https://www.cryptolux.org/index.php/SPARX
- Check https://eprint.iacr.org/2016/984
- Study the SPARX ciphers!

Thank you!

Cryptolux Team

SPARX: A Family of ARX-based Lightweight Block Ciphers