Attacks and Countermeasures for White-box Designs

Alex Biryukov, Aleksei Udovenko

CSC and SnT , University of Luxembourg

December 5, 2018

Plan

1 Introduction

2 Attacks on Masked White-box Implementations

3 Countermeasures

4 Algebraic Security

White-box

- Implementation fully available, secret key unextractable

■ Extra: one-wayness, incompressibility, traitor traceability, ...

White-box

- Implementation fully available, secret key unextractable

■ Extra: one-wayness, incompressibility, traitor traceability, ...

- The most challenging direction (this talk): white-box implementations of existing symmetric primitives, e.g. the AES
■ "Cryptographic obfuscation"

White-box: Industry vs Academia

White-box: Industry vs Academia

- many applications
- strong need for practical white-box
- industry does WB:
hidden designs

White-box: Industry vs Academia

■ theory: approaches using iO/FE, currently impractical

- strong need for practical white-box
- industry does WB:
hidden designs
- many applications

■ practical WB-AES: few attempts (2002-2017), all broken

- powerful DCA attack (CHES 2016)

White-Box: Differential Computation Analysis (DCA)

- DCA = Differential Power Analysis (DPA) applied to white-box implementations
- Most of the implementations broken automatically

White-Box: Differential Computation Analysis (DCA)

- DCA = Differential Power Analysis (DPA) applied to white-box implementations
- Most of the implementations broken automatically

■ Side-Channel protection: masking schemes

White-Box: Differential Computation Analysis (DCA)

- DCA = Differential Power Analysis (DPA) applied to white-box implementations
- Most of the implementations broken automatically
- Side-Channel protection: masking schemes
this talk:
Can we apply the masking protection for white-box impl.?

General Setting

- Boolean circuits
- Obfuscated reference implementation

General Setting

- Boolean circuits
- Obfuscated reference implementation

■ Predictable values: computations from ref. impl., e.g.

$$
s=\operatorname{Bit}_{1}\left(S B o x\left(p t_{1} \oplus k_{1}\right)\right)
$$

General Setting

- Boolean circuits
- Obfuscated reference implementation

■ Predictable values: computations from ref. impl., e.g.

$$
s=\operatorname{Bit}_{1}\left(S \operatorname{Box}\left(p t_{1} \oplus k_{1}\right)\right)
$$

■ Masking: $\exists v_{1}, \ldots, v_{t}$ nodes (shares), $f: \mathbb{F}_{2}^{t} \rightarrow \mathbb{F}_{2}$ s.t. for any encryption

$$
f\left(v_{1}, \ldots, v_{t}\right)=s
$$

Masking Schemes

■ Example: Boolean masking: linear decoder $f=\bigoplus_{i} v_{i}$

- Example: FHE: non-linear decoder f

Masking Schemes

■ Example: Boolean masking: linear decoder $f=\bigoplus_{i} v_{i}$

- Example: FHE: non-linear decoder f
- Aim for efficient schemes: relatively small t (number of shares)

Masking Schemes

■ Example: Boolean masking: linear decoder $f=\bigoplus_{i} v_{i}$

- Example: FHE: non-linear decoder f
- Aim for efficient schemes: relatively small t (number of shares)
\Rightarrow can be secure only if the locations of the shares in the circuit are unknown!
this talk: exploring this possibility

Plan

1 Introduction

2 Attacks on Masked White-box Implementations

3 Countermeasures

4 Algebraic Security

Attacks I

Combinatorial attacks:

- (partially) guess locations of the shares
- probabilistic: correlation with predictable values

■ exact: time-memory trade-off

Attacks I

Combinatorial attacks:

- (partially) guess locations of the shares
- probabilistic: correlation with predictable values

■ exact: time-memory trade-off

Fault attacks:

- new application: recover locations of the shares
- 1- and 2- share fault injections
- applicability depends on protections

Attacks II

(Generalized) Differential Computation Analysis (DCA):

Attacks II

(Generalized) Differential Computation Analysis (DCA):

Attacks II

(Generalized) Differential Computation Analysis (DCA):

The Linear Algebra Attack (1)

- consider the Boolean masking (the linear decoder)
- matching with a predictable value s : a basic linear algebra problem:

$$
M \times z=s, \quad M=\left[\begin{array}{l|l|l}
v_{1} & \mid \ldots & v_{n}
\end{array}\right]
$$

The Linear Algebra Attack (1)

- consider the Boolean masking (the linear decoder)
- matching with a predictable value s : a basic linear algebra problem:

$$
M \times z=s, \quad M=\left[\begin{array}{l|l|l}
v_{1} & \mid \ldots & v_{n}
\end{array}\right]
$$

- v_{i} is the vector of values computed in the node i of the circuit
- z is a vector indicating locations of shares among nodes of the circuit
- higher-order masking does not help...

The Linear Algebra Attack (2)

Generalizations:

- nonlinear decoders, through linearization technique
- approximately linear decoders, through LPN algorithms

The Linear Algebra Attack (2)

Generalizations:

- nonlinear decoders, through linearization technique
- approximately linear decoders, through LPN algorithms

■ semi-linear decoders:
1 assume $s \cdot r$ is computed/shared in the circuit, where
$2 \sqrt{2}$ is a predictable value
$3 r$ is unpredictable (pseudorandom, \approx uniform)

The Linear Algebra Attack (2)

Generalizations:

- nonlinear decoders, through linearization technique
- approximately linear decoders, through LPN algorithms
- semi-linear decoders:

1 assume $s \cdot r$ is computed/shared in the circuit, where
$2 \boldsymbol{s}$ is a predictable value
$3 r$ is unpredictable (pseudorandom, \approx uniform)
4 choose plaintexts p_{1}, \ldots, p_{D} such that:

$$
\begin{array}{ll}
s\left(p_{i}\right)=0 & \text { for } 1 \leq i \leq D-1 \\
s\left(p_{i}\right)=1 & \text { for } i=D
\end{array}
$$

$5 s \cdot r$ will be equal to $(0,0, \ldots, 0,1)$ with $\operatorname{Pr}=1 / 2$
6 if s is guessed wrong, such vector is unlikely to be a solution

Plan

1 Introduction

2 Attacks on Masked White-box Implementations

3 Countermeasures

4 Algebraic Security

Our Framework: Two Components

Value Hiding

Structure Hiding

00101010111010010010101011101001 10101010100101010001001010101011

10000010011000000010101010001001
01100001110000010010101011101110

Our Framework: Two Components

Value Hiding

Structure Hiding

00101010111010010010101011101001
10101010100101010001001010101011

10000010011000000010101010001001
01100001110000010010101011101110

1 DCA side-channel attack
2 (new) linear algebra attack

Our Framework: Two Components

Value Hiding

Structure Hiding

00101010111010010010101011101001
10101010100101010001001010101011
10000010011000000010101010001001
01100001110000010010101011101110

1 DCA side-channel attack
2 (new) linear algebra attack
1 circuit analysis / simplification
2 fault injections
3 pseudorandomness removal

4 etc.

Our Framework: Two Components

Value Hiding

00101010111010010010101011101001
10101010100101010001001010101011
10000010011000000010101010001001
01100001110000010010101011101110

Structure Hiding

1 circuit analysis / simplification
1 DCA side-channel attack
2 (new) linear algebra attack
2 fault injections
3 pseudorandomness removal

4 etc.
(hopefully) easier to solve independently

Value Hiding

Our solution for value hiding:

1 non-linear masking (vs linear algebra attack)
2 classic linear masking (vs DCA correlation attack)
3 provable security against the linear algebra attack

Plan

1 Introduction

2 Attacks on Masked White-box Implementations

3 Countermeasures

4 Algebraic Security

Algebraic Security (1/2)

Security Model:
1 random bits allowed

- as in classic masking
- model unpredictability
- in WB impl. as pseudorandom

Algebraic Security (1/2)

Security Model:
1 random bits allowed

- as in classic masking
- model unpredictability
- in WB impl. as pseudorandom

2 Goal:
any $f \in \operatorname{span}\left\{v_{i}\right\}$ is unpredictable

Algebraic Security (1/2)

Security Model:
1 random bits allowed

- as in classic masking
- model unpredictability
- in WB impl. as pseudorandom

2 Goal:
any $f \in \operatorname{span}\left\{v_{i}\right\}$ is
unpredictable
3 isolated from obfuscation problems

Algebraic Security (2/2)

Adversary:

I chooses plaintext/key pairs

Algebraic Security (2/2)

Adversary:

1 chooses plaintext/key pairs
2 chooses $f \in \operatorname{span}\left\{v_{i}\right\}$

Algebraic Security (2/2)

Adversary:

1 chooses plaintext/key pairs
2 chooses $f \in \operatorname{span}\left\{v_{i}\right\}$
3 tries to predict values of this function
(i.e. before random bits are sampled)

Algebraic Security (2/2)

Adversary:

1 chooses plaintext/key pairs
[$\mathbf{2}$ chooses $f \in \operatorname{span}\left\{v_{i}\right\}$
$\mathbf{3}$ tries to predict values of this function
(i.e. before random bits are sampled)
4 succeeds, if only f matches

Algebraic Security (3/3)

Proposition

Let $F=\left\{f(x, \cdot, \cdot) \mid f\left(x, r_{e}, r_{c}\right) \in \operatorname{span}\left\{v_{i}\right\}, x \in \mathbb{F}_{2}^{N}\right\}$.
Let $\varepsilon=\max _{f \in F} \operatorname{bias}(f), e=-\log _{2}(1 / 2+\varepsilon)$.
Then for any adversary \mathcal{A} choosing Q inputs

$$
\operatorname{Adv}[\mathcal{A}] \leq \min \left(2^{Q-\left|r_{c}\right|}, 2^{-e Q}\right)
$$

Algebraic Security (3/3)

Proposition

Let $F=\left\{f(x, \cdot, \cdot) \mid f\left(x, r_{e}, r_{c}\right) \in \operatorname{span}\left\{v_{i}\right\}, x \in \mathbb{F}_{2}^{N}\right\}$.
Let $\varepsilon=\max _{f \in F} \operatorname{bias}(f), e=-\log _{2}(1 / 2+\varepsilon)$.
Then for any adversary \mathcal{A} choosing Q inputs

$$
\operatorname{Adv}[\mathcal{A}] \leq \min \left(2^{Q-\left|r_{c}\right|}, 2^{-e Q}\right)
$$

Corollary

Let k be a positive integer. Then for any adversary \mathcal{A}

$$
\operatorname{Adv}[\mathcal{A}] \leq 2^{-k} \text { if } e>0 \text { and }\left|r_{c}\right| \geq k \cdot\left(1+\frac{1}{e}\right)
$$

Algebraic Security (3/3)

Proposition

Let $F=\left\{f(x, \cdot, \cdot) \mid f\left(x, r_{e}, r_{c}\right) \in \operatorname{span}\left\{v_{i}\right\}, x \in \mathbb{F}_{2}^{N}\right\}$.
Let $\varepsilon=\max _{f \in F} \operatorname{bias}(f), e=-\log _{2}(1 / 2+\varepsilon)$.
Then for any adversary \mathcal{A} choosing Q inputs

$$
\operatorname{Adv}[\mathcal{A}] \leq \min \left(2^{Q-\left|r_{c}\right|}, 2^{-e Q}\right)
$$

Corollary

Let k be a positive integer. Then for any adversary \mathcal{A}

$$
\operatorname{Adv}[\mathcal{A}] \leq 2^{-k} \text { if } e>0 \text { and }\left|r_{c}\right| \geq k \cdot\left(1+\frac{1}{e}\right)
$$

Information-theoretic security

Minimalist Quadratic Masking Scheme (MQMS)

Masking scheme:

- set of gadgets
- provably secure composition

```
function \(\operatorname{Decode}(a, b, c)\)
    return \(a b \oplus c\)
function \(\operatorname{EvalXOR}\left((a, b, c),(d, e, f),\left(r_{a}, r_{b}, r_{c}\right),\left(r_{d}, r_{e}, r_{f}\right)\right)\)
    \((a, b, c) \leftarrow \operatorname{Refresh}\left((a, b, c),\left(r_{a}, r_{b}, r_{c}\right)\right)\)
    \((d, e, f) \leftarrow \operatorname{Refresh}\left((d, e, f),\left(r_{d}, r_{e}, r_{f}\right)\right)\)
    \(x \leftarrow a \oplus d\)
    \(y \leftarrow b \oplus e\)
    \(z \leftarrow c \oplus f \oplus a e \oplus b d\)
    return \((x, y, z)\)
function EvalAND \(\left((a, b, c),(d, e, f),\left(r_{a}, r_{b}, r_{c}\right),\left(r_{d}, r_{e}, r_{f}\right)\right)\)
    \((a, b, c) \leftarrow \operatorname{Refresh}\left((a, b, c),\left(r_{a}, r_{b}, r_{c}\right)\right)\)
    \((d, e, f) \leftarrow \operatorname{Refresh}\left((d, e, f),\left(r_{d}, r_{e}, r_{f}\right)\right)\)
    \(m_{a} \leftarrow b f \oplus r_{c} e\)
    \(m_{d} \leftarrow c e \oplus r_{f} b\)
    \(x \leftarrow a e \oplus r_{f}\)
    \(y \leftarrow b d \oplus r_{c}\)
    \(z \leftarrow a m_{a} \oplus d m_{d} \oplus r_{c} r_{f} \oplus c f\)
    return \((x, y, z)\)
function Refresh \(\left((a, b, c),\left(r_{a}, r_{b}, r_{c}\right)\right)\)
    \(m_{a} \leftarrow r_{a} \cdot\left(b \oplus r_{c}\right)\)
    \(m_{b} \leftarrow r_{b} \cdot\left(a \oplus r_{c}\right)\)
    \(r_{c} \leftarrow m_{a} \oplus m_{b} \oplus\left(r_{a} \oplus r_{c}\right)\left(r_{b} \oplus r_{c}\right) \oplus r_{c}\)
    \(a \leftarrow a \oplus r_{a}\)
    \(b \leftarrow b \oplus r_{b}\)
    \(c \leftarrow c \oplus r_{c}\)
    return \((a, b, c)\)
```


Minimalist Quadratic Masking Scheme (MQMS)

Masking scheme:

- set of gadgets
- provably secure composition
- quadratic decoder:
$(a, b, c) \mapsto a b \oplus c$

```
function \(\operatorname{Decode}(a, b, c)\)
    return \(a b \oplus c\)
function \(\operatorname{EvalXOR}\left((a, b, c),(d, e, f),\left(r_{a}, r_{b}, r_{c}\right),\left(r_{d}, r_{e}, r_{f}\right)\right)\)
    \((a, b, c) \leftarrow \operatorname{Refresh}\left((a, b, c),\left(r_{a}, r_{b}, r_{c}\right)\right)\)
    \((d, e, f) \leftarrow \operatorname{Refresh}\left((d, e, f),\left(r_{d}, r_{e}, r_{f}\right)\right)\)
    \(x \leftarrow a \oplus d\)
    \(y \leftarrow b \oplus e\)
    \(z \leftarrow c \oplus f \oplus a e \oplus b d\)
    return \((x, y, z)\)
function EvalAND \(\left((a, b, c),(d, e, f),\left(r_{a}, r_{b}, r_{c}\right),\left(r_{d}, r_{e}, r_{f}\right)\right)\)
    \((a, b, c) \leftarrow \operatorname{Refresh}\left((a, b, c),\left(r_{a}, r_{b}, r_{c}\right)\right)\)
    \((d, e, f) \leftarrow \operatorname{Refresh}\left((d, e, f),\left(r_{d}, r_{e}, r_{f}\right)\right)\)
    \(m_{a} \leftarrow b f \oplus r_{c} e\)
    \(m_{d} \leftarrow c e \oplus r_{f} b\)
    \(x \leftarrow a e \oplus r_{f}\)
    \(y \leftarrow b d \oplus r_{c}\)
    \(z \leftarrow a m_{a} \oplus d m_{d} \oplus r_{c} r_{f} \oplus c f\)
    return \((x, y, z)\)
function Refresh \(\left((a, b, c),\left(r_{a}, r_{b}, r_{c}\right)\right)\)
    \(m_{a} \leftarrow r_{a} \cdot\left(b \oplus r_{c}\right)\)
    \(m_{b} \leftarrow r_{b} \cdot\left(a \oplus r_{c}\right)\)
    \(r_{c} \leftarrow m_{a} \oplus m_{b} \oplus\left(r_{a} \oplus r_{c}\right)\left(r_{b} \oplus r_{c}\right) \oplus r_{c}\)
    \(a \leftarrow a \oplus r_{a}\)
    \(b \leftarrow b \oplus r_{b}\)
    \(c \leftarrow c \oplus r_{c}\)
    return \((a, b, c)\)
```


Minimalist Quadratic Masking Scheme (MQMS)

Masking scheme:

- set of gadgets
- provably secure composition
- quadratic decoder: $(a, b, c) \mapsto a b \oplus c$
- first-order protection

```
function \(\operatorname{Decode}(a, b, c)\)
    return \(a b \oplus c\)
function \(\operatorname{EvalXOR}\left((a, b, c),(d, e, f),\left(r_{a}, r_{b}, r_{c}\right),\left(r_{d}, r_{e}, r_{f}\right)\right)\)
    \((a, b, c) \leftarrow \operatorname{Refresh}\left((a, b, c),\left(r_{a}, r_{b}, r_{c}\right)\right)\)
    \((d, e, f) \leftarrow \operatorname{Refresh}\left((d, e, f),\left(r_{d}, r_{e}, r_{f}\right)\right)\)
    \(x \leftarrow a \oplus d\)
    \(y \leftarrow b \oplus e\)
    \(z \leftarrow c \oplus f \oplus a e \oplus b d\)
    return \((x, y, z)\)
function EvalAND \(\left((a, b, c),(d, e, f),\left(r_{a}, r_{b}, r_{c}\right),\left(r_{d}, r_{e}, r_{f}\right)\right)\)
    \((a, b, c) \leftarrow \operatorname{Refresh}\left((a, b, c),\left(r_{a}, r_{b}, r_{c}\right)\right)\)
    \((d, e, f) \leftarrow \operatorname{Refresh}\left((d, e, f),\left(r_{d}, r_{e}, r_{f}\right)\right)\)
    \(m_{a} \leftarrow b f \oplus r_{c} e\)
    \(m_{d} \leftarrow c e \oplus r_{f} b\)
    \(x \leftarrow a e \oplus r_{f}\)
    \(y \leftarrow b d \oplus r_{c}\)
    \(z \leftarrow a m_{a} \oplus d m_{d} \oplus r_{c} r_{f} \oplus c f\)
    return \((x, y, z)\)
function Refresh \(\left((a, b, c),\left(r_{a}, r_{b}, r_{c}\right)\right)\)
    \(m_{a} \leftarrow r_{a} \cdot\left(b \oplus r_{c}\right)\)
    \(m_{b} \leftarrow r_{b} \cdot\left(a \oplus r_{c}\right)\)
    \(r_{c} \leftarrow m_{a} \oplus m_{b} \oplus\left(r_{a} \oplus r_{c}\right)\left(r_{b} \oplus r_{c}\right) \oplus r_{c}\)
    \(a \leftarrow a \oplus r_{a}\)
    \(b \leftarrow b \oplus r_{b}\)
    \(c \leftarrow c \oplus r_{c}\)
    return \((a, b, c)\)
```


MQMS Security

Security:

1 algorithm to verify that bias $\neq 1 / 2$
2 max. degree on r:4

```
function \(\operatorname{Decode}(a, b, c)\)
    return \(a b \oplus c\)
function \(\operatorname{EvalXOR}\left((a, b, c),(d, e, f),\left(r_{a}, r_{b}, r_{c}\right),\left(r_{d}, r_{e}, r_{f}\right)\right)\)
    \((a, b, c) \leftarrow \operatorname{Refresh}\left((a, b, c),\left(r_{a}, r_{b}, r_{c}\right)\right)\)
    \((d, e, f) \leftarrow \operatorname{Refresh}\left((d, e, f),\left(r_{d}, r_{e}, r_{f}\right)\right)\)
    \(x \leftarrow a \oplus d\)
    \(y \leftarrow b \oplus e\)
    \(z \leftarrow c \oplus f \oplus a e \oplus b d\)
    return \((x, y, z)\)
function \(\operatorname{EvalAND}\left((a, b, c),(d, e, f),\left(r_{a}, r_{b}, r_{c}\right),\left(r_{d}, r_{e}, r_{f}\right)\right)\)
    \((a, b, c) \leftarrow \operatorname{Refresh}\left((a, b, c),\left(r_{a}, r_{b}, r_{c}\right)\right)\)
    \((d, e, f) \leftarrow \operatorname{Refresh}\left((d, e, f),\left(r_{d}, r_{e}, r_{f}\right)\right)\)
    \(m_{a} \leftarrow b f \oplus r_{c} e\)
    \(m_{d} \leftarrow c e \oplus r_{f} b\)
    \(x \leftarrow a e \oplus r_{f}\)
    \(y \leftarrow b d \oplus r_{c}\)
    \(z \leftarrow a m_{a} \oplus d m_{d} \oplus r_{c} r_{f} \oplus c f\)
    return \((x, y, z)\)
function Refresh \(\left((a, b, c),\left(r_{a}, r_{b}, r_{c}\right)\right)\)
    \(m_{a} \leftarrow r_{a} \cdot\left(b \oplus r_{c}\right)\)
    \(m_{b} \leftarrow r_{b} \cdot\left(a \oplus r_{c}\right)\)
    \(r_{c} \leftarrow m_{a} \oplus m_{b} \oplus\left(r_{a} \oplus r_{c}\right)\left(r_{b} \oplus r_{c}\right) \oplus r_{c}\)
    \(a \leftarrow a \oplus r_{a}\)
    \(b \leftarrow b \oplus r_{b}\)
    \(c \leftarrow c \oplus r_{c}\)
    return \((a, b, c)\)
```


MQMS Security

Security:

1 algorithm to verify that bias $\neq 1 / 2$
2 max. degree on r : 4
\Rightarrow bias $\leq 7 / 16$
for 80-bit security
we need $\left|r_{c}\right| \geq 940$

```
function \(\operatorname{Decode}(a, b, c)\)
    return \(a b \oplus c\)
function \(\operatorname{EvalXOR}\left((a, b, c),(d, e, f),\left(r_{a}, r_{b}, r_{c}\right),\left(r_{d}, r_{e}, r_{f}\right)\right)\)
    \((a, b, c) \leftarrow \operatorname{Refresh}\left((a, b, c),\left(r_{a}, r_{b}, r_{c}\right)\right)\)
    \((d, e, f) \leftarrow \operatorname{Refresh}\left((d, e, f),\left(r_{d}, r_{e}, r_{f}\right)\right)\)
    \(x \leftarrow a \oplus d\)
    \(y \leftarrow b \oplus e\)
    \(z \leftarrow c \oplus f \oplus a e \oplus b d\)
    return \((x, y, z)\)
function \(\operatorname{EvalAND}\left((a, b, c),(d, e, f),\left(r_{a}, r_{b}, r_{c}\right),\left(r_{d}, r_{e}, r_{f}\right)\right)\)
    \((a, b, c) \leftarrow \operatorname{Refresh}\left((a, b, c),\left(r_{a}, r_{b}, r_{c}\right)\right)\)
    \((d, e, f) \leftarrow \operatorname{Refresh}\left((d, e, f),\left(r_{d}, r_{e}, r_{f}\right)\right)\)
    \(m_{a} \leftarrow b f \oplus r_{c} e\)
    \(m_{d} \leftarrow c e \oplus r_{f} b\)
    \(x \leftarrow a e \oplus r_{f}\)
    \(y \leftarrow b d \oplus r_{c}\)
    \(z \leftarrow a m_{a} \oplus d m_{d} \oplus r_{c} r_{f} \oplus c f\)
    return \((x, y, z)\)
function Refresh \(\left((a, b, c),\left(r_{a}, r_{b}, r_{c}\right)\right)\)
    \(m_{a} \leftarrow r_{a} \cdot\left(b \oplus r_{c}\right)\)
    \(m_{b} \leftarrow r_{b} \cdot\left(a \oplus r_{c}\right)\)
    \(r_{c} \leftarrow m_{a} \oplus m_{b} \oplus\left(r_{a} \oplus r_{c}\right)\left(r_{b} \oplus r_{c}\right) \oplus r_{c}\)
    \(a \leftarrow a \oplus r_{a}\)
    \(b \leftarrow b \oplus r_{b}\)
    \(c \leftarrow c \oplus r_{c}\)
    return \((a, b, c)\)
```


Implementation

Proof-of-concept masked AES-128
1 MQMS + 1-st order Boolean masking
2 31,783 \rightarrow 2,588,743 gates expansion ($\times 81$)
316 Mb code / 1 Kb RAM / 0.05s per block on a laptop
4 (unoptimized)

> github.com/cryptolu/whitebox

Conclusions

Conclusions:

11 new attack methods \Rightarrow new constraints on a white-box impl.
2 new results on provable security for white-box model
3 new links with side-channel research

Conclusions

Conclusions:

1 new attack methods \Rightarrow new constraints on a white-box impl.
2 new results on provable security for white-box model
3 new links with side-channel research

Open problems and future work:
1 structure-hiding component
2 higher-order protection
3 analysis of LPN-based attacks
4 deeper study of the fault attacks
5 optimizations

The End

ePrint 2018/049

github.com/cryptolu/whitebox

Thank you!

