Convexity of division property transitions: theory, algorithms and compact models

Aleksei Udovenko

CryptoExperts

ASIACRYPT 2021,

December 10th

This work focuses on traditional/conventional bit-based (2-subset) division property [Tod15]¹

Contributions

1 New insights on the theory:

- close links of div. prop. propagation with the function's graph
- new compact representation, suitable for modeling (CNF/MILP/etc.)

¹(EUROCRYPT'15) Yosuke Todo. Structural evaluation by generalized integral property ²(ToSC'20) Derbez, Fouque. Increasing precision of division property

This work focuses on traditional/conventional bit-based (2-subset) division property [Tod15]¹

Contributions

1 New insights on the theory:

- close links of div. prop. propagation with the function's graph
- new compact representation, suitable for modeling (CNF/MILP/etc.)

2 New algorithms: DPPT/compact repr. in $O(n2^{2n})$, even less for "heavy" S-boxes

¹(EUROCRYPT'15) Yosuke Todo. Structural evaluation by generalized integral property ²(ToSC'20) Derbez, Fouque. Increasing precision of division property

This work focuses on traditional/conventional bit-based (2-subset) division property [Tod15]¹

Contributions

1 New insights on the theory:

- close links of div. prop. propagation with the function's graph
- new compact representation, suitable for modeling (CNF/MILP/etc.)
- **2** New algorithms: DPPT/compact repr. in $O(n2^{2n})$, even less for "heavy" S-boxes
- 3 Application to LED: Super-Sbox model does not yield 8-round distinguishers (Q unsolved by [DF20]²)

¹(EUROCRYPT'15) Yosuke Todo. Structural evaluation by generalized integral property ²(ToSC'20) Derbez, Fouque. Increasing precision of division property

Plan

1 Introduction

- Division property
- Monotonicity and convexity on \mathbb{F}_2^n
- Parity sets: formalization of division property

2 New insights

- New characterizations of transitions
- Compact representation
- Completeness and the symmetry of the division core
- Convexity of minimal transitions
- 3 Algorithms

4 Application to LED

Division property

Division property

Division property

■ partial order on \mathbb{F}_2^n : $u \preceq v$ iff $\forall i \ u_i \leq v_i$

- partial order on \mathbb{F}_2^n : $u \leq v$ iff $\forall i \ u_i \leq v_i$
- lower set: $u \notin X \not\preceq v \in X$

- partial order on \mathbb{F}_2^n : $u \leq v$ iff $\forall i \ u_i \leq v_i$
- lower set: $u \notin X \not\preceq v \in X$
- upper set: $u \in X \not\preceq v \notin X$

- partial order on \mathbb{F}_2^n : $u \leq v$ iff $\forall i \ u_i \leq v_i$
- lower set: $u \notin X \not\preceq v \in X$
- upper set: $u \in X \not\preceq v \notin X$
- extreme elements
 (resp. maximal/minimal)
 form a compact representation:
 {**11, 111*}

- partial order on \mathbb{F}_2^n : $u \leq v$ iff $\forall i \ u_i \leq v_i$
- lower set: $u \notin X \not\leq v \in X$
- upper set: $u \in X \not\preceq v \notin X$
- extreme elements
 (resp. maximal/minimal)
 form a compact representation:
 {**11, 111*}
 {0***, **00}

- partial order on \mathbb{F}_2^n : $u \leq v$ iff $\forall i \ u_i \leq v_i$
- lower set: $u \notin X \not\preceq v \in X$
- upper set: $u \in X \not\preceq v \notin X$
- extreme elements
 (resp. maximal/minimal)
 form a compact representation:
 {**11, 111*}
 {0***, **00}
- (resp. upper and lower bounds)

- partial order on \mathbb{F}_2^n : $u \leq v$ iff $\forall i \ u_i \leq v_i$
- lower set: $u \notin X \not\preceq v \in X$
- upper set: $u \in X \not\preceq v \notin X$
- extreme elements
 (resp. maximal/minimal)
 form a compact representation:
 {**11, 111*}
 {0***, **00}
- (resp. upper and lower bounds)
- convex set: lower set ∩ upper set (two-sided bound)

modeling an **upper** set $X \subseteq \mathbb{F}_2^n$:

modeling an **upper** set $X \subseteq \mathbb{F}_2^n$: monotone DNF (from the min-set):

$$\underbrace{(x_2 \land x_3)}_{0011} \lor \underbrace{(x_0 \land x_1 \land x_2)}_{1110}$$

modeling an **upper** set $X \subseteq \mathbb{F}_2^n$: monotone DNF (from the min-set):

$$\underbrace{(x_2 \wedge x_3)}_{0011} \lor \underbrace{(x_0 \wedge x_1 \wedge x_2)}_{1110}$$

monotone CNF (from the max-set of the complement):

$$\underbrace{(x_0 \lor x_3)}_{0110} \land \underbrace{(x_2)}_{1101} \land \underbrace{(x_1 \lor x_3)}_{1010}$$

modeling an **upper** set $X \subseteq \mathbb{F}_2^n$: monotone DNF (from the min-set):

$$\underbrace{(x_2 \wedge x_3)}_{0011} \lor \underbrace{(x_0 \wedge x_1 \wedge x_2)}_{1110}$$

monotone CNF (from the max-set of the complement):

$$\underbrace{(x_0 \lor x_3)}_{0110} \land \underbrace{(x_2)}_{1101} \land \underbrace{(x_1 \lor x_3)}_{1010}$$

note: CNF-DNF size gap can be exponential!

modeling an convex set $X \subseteq \mathbb{F}_2^n$:

modeling an convex set $X \subseteq \mathbb{F}_2^n$:

combined CNF of the upper/lower bounds:

$$\underbrace{\left(\neg x_{0} \lor \neg x_{3}\right)}_{1001} \land \underbrace{\left(\neg x_{0} \lor \neg x_{2}\right)}_{1010} \land \underbrace{\left(x_{1} \lor x_{3}\right)}_{1010}$$

Definition ([BC16])
Let
$$X \subseteq \mathbb{F}_2^n$$
. Define
ParitySet $(X) = \left\{ u \in \mathbb{F}_2^n \mid \bigoplus_{x \in X} x^u = 1 \right\}$

Definition ([BC16])
Let
$$X \subseteq \mathbb{F}_2^n$$
. Define
ParitySet(X) = $\left\{ u \in \mathbb{F}_2^n \mid \bigoplus_{x \in X} x^u = 1 \right\}$

Definition ([Tod15])

X satisfies division property $\mathbb{K} \subseteq \mathbb{F}_2^n$ if

 $\operatorname{ParitySet}(X) \subseteq \operatorname{UpperClosure}(\mathbb{K})$

(i.e., $\operatorname{ParitySet}(X)$ is lower bounded by \mathbb{K})

Definition ([BC16])

Let $X \subseteq \mathbb{F}_2^n$. Define

$$\operatorname{ParitySet}(X) = \left\{ u \in \mathbb{F}_2^n \; \middle| \; \bigoplus_{x \in X} x^u = 1 \right\}$$

Definition ([Tod15])

X satisfies division property $\mathbb{K} \subseteq \mathbb{F}_2^n$ if

 $\operatorname{ParitySet}(X) \subseteq \operatorname{UpperClosure}(\mathbb{K})$

(i.e., ParitySet(X) is lower bounded by \mathbb{K})

Proposition

 $u \in \operatorname{ParitySet}(X)$ if and only if the ANF of $\mathbb{1}_{\neg X}$ contains $x^{\neg u}$

 \Rightarrow parity set is equivalent to the indicator's ANF up to negations!

Definition ([BC16])

Let $X \subseteq \mathbb{F}_2^n$. Define

$$\operatorname{ParitySet}(X) = \left\{ u \in \mathbb{F}_2^n \; \middle| \; \bigoplus_{x \in X} x^u = 1 \right\}$$

Definition ([Tod15])

X satisfies division property $\mathbb{K} \subseteq \mathbb{F}_2^n$ if

 $\operatorname{ParitySet}(X) \subseteq \operatorname{UpperClosure}(\mathbb{K})$

(i.e., $\operatorname{ParitySet}(X)$ is lower bounded by \mathbb{K})

Proposition

 $u \in \operatorname{ParitySet}(X)$ if and only if the ANF of $\mathbb{1}_{\neg X}$ contains $x^{\neg u}$

 \Rightarrow parity set is equivalent to the indicator's ANF up to negations!

The takeaway

 \Rightarrow division property of a set defines upper bounds on monomials in the indicator's ANF

Propagation of division property

Proposition (Propagation rule)

Let $F : \mathbb{F}_{2}^{n} \to \mathbb{F}_{2}^{m}$, $u \in \mathbb{F}_{2}^{n}$, $v \in \mathbb{F}_{2}^{m}$. If $F^{v'}(x)$ contains monomial $x^{u'}$ for some $v' \leq v, u' \succeq u$, then $u \xrightarrow{F} v$ is a valid division property transition through F.

Propagation of division property

Proposition (Propagation rule)

Let $F : \mathbb{F}_{2}^{n} \to \mathbb{F}_{2}^{m}$, $u \in \mathbb{F}_{2}^{n}$, $v \in \mathbb{F}_{2}^{m}$. If $F^{v'}(x)$ contains monomial $x^{u'}$ for some $v' \leq v, u' \succeq u$, then $u \xrightarrow{F} v$ is a valid division property transition through F.

e.g. $z_1 = (F_0(x))_1$ contains $x_0 x_1 x_2 x_5$

Plan

1 Introduction

- Division property
- Monotonicity and convexity on \mathbb{F}_2^n
- Parity sets: formalization of division property

2 New insights

- New characterizations of transitions
- Compact representation
- Completeness and the symmetry of the division core
- Convexity of minimal transitions

3 Algorithms

4 Application to LED

New characterizations of transitions

Definition

The graph of $F : \mathbb{F}_2^n \to \mathbb{F}_2^m$ is defined as

$$\Gamma_F = \{(x, y) \mid y = F(x)\}$$
 $(|\Gamma_F| = 2^n)$

 $^{^{3}(\}mathsf{IEEE\ TIT\ }2020)$ Carlet. Graph indicators of vectorial functions and bounds on the algebraic degree of composite functions.

New characterizations of transitions

Definition

The graph of $F : \mathbb{F}_2^n \to \mathbb{F}_2^m$ is defined as

$$\Gamma_F = \{(x, y) \mid y = F(x)\}$$
 $(|\Gamma_F| = 2^n)$

Theorem

The following statements are equivalent:

1 transition $u \xrightarrow{F} v$ is valid

2 $(\neg u, v)$ belongs to the division property of Γ_F (i.e., UpperClosure(ParitySet (Γ_F)))

3 the graph indicator of F contains a monomial multiple of $x^{u}y^{\neg v}$ (links to [Car20]³)

³(IEEE TIT 2020) Carlet. Graph indicators of vectorial functions and bounds on the algebraic degree of composite functions.

Compact representation

Definition

Define the division core of $F : \mathbb{F}_2^n \to \mathbb{F}_2^m$ as

 $\operatorname{DivCore}(F) = \operatorname{MinSet}(\operatorname{ParitySet}(\Gamma_F))$ i.e., the division property of Γ_F

Equivalently:

• DivCore(
$$F$$
) = $\left\{ (\neg u, v) \mid u \xrightarrow{F} v, u \text{ is maximal}, v \text{ is minimal} \right\}$

• DivCore(F) = {($\neg u, \neg v$) | $x^u y^v$ is a maximal monomial in the ANF of Γ_F }

Compact representation

Definition

Define the division core of $F : \mathbb{F}_2^n \to \mathbb{F}_2^m$ as

 $\operatorname{DivCore}(F) = \operatorname{MinSet}(\operatorname{ParitySet}(\Gamma_F))$ i.e., the division property of Γ_F

Equivalently:

- DivCore(F) = {($\neg u, v$) | $u \xrightarrow{F} v, u$ is maximal, v is minimal}
- $\operatorname{DivCore}(F) = \{(\neg u, \neg v) \mid x^u y^v \text{ is a maximal monomial in the ANF of } \Gamma_F\}$
- Classic propagation of division property focuses on minimal/reduced transitions $u \xrightarrow{F} v$, which only require that v is minimal.
- DivCore in addition requires that *u* is maximal.

Completeness and the symmetry of the division core

All sets of transitions, both for F and F^{-1} can be derived from DivCore(F):

Theorem Let $F : \mathbb{F}_2^n \to \mathbb{F}_2^m$. Then, $\square u \xrightarrow{F} v \quad \Leftrightarrow \quad (\neg u, v) \in \text{UpperClosure}(\text{DivCore}(F))$ 2 $u \xrightarrow{F} v \Leftrightarrow (\neg u, v) \in \operatorname{MinSet}_{v}(\operatorname{UpperClosure}(\operatorname{DivCore}(F)))$ If, in addition, n = m and F is bijective: 4 $v \xrightarrow{F^{-1}} u \Leftrightarrow (u, \neg v) \in \text{UpperClosure}(\text{DivCore}(F))$ 5 $v \xrightarrow{F^{-1}} u \Leftrightarrow (u, \neg v) \in \operatorname{MinSet}_u(\operatorname{UpperClosure}(\operatorname{DivCore}(F)))$

Convexity of minimal transitions

partition of $\mathbb{F}_2^n \times \mathbb{F}_2^m$ into transition classes $\neg u \xrightarrow{F} v$

lower bound (remove invalid)

Modeling:

- removing invalid transitions is sufficient
- however, removing redundant transitions aids solvers
- ⇒ modeling a convex set (e.g. removing monotone invalid and redundant sets)

Convexity of minimal transitions

partition of $\mathbb{F}_2^n \times \mathbb{F}_2^m$ into transition classes $\neg u \xrightarrow{F} v$

Modeling:

- removing invalid transitions is sufficient
- however, removing redundant transitions aids solvers
- ⇒ modeling a convex set (e.g. removing monotone invalid and redundant sets)
- alternative: removing above upper bound, often is more compact

Convexity of minimal transitions

partition of $\mathbb{F}_2^n \times \mathbb{F}_2^m$ into transition classes $\neg u \xrightarrow{F} v$

Modeling:

- removing invalid transitions is sufficient
- however, removing redundant transitions aids solvers
- ⇒ modeling a convex set (e.g. removing monotone invalid and redundant sets)
- alternative: removing above upper bound, often is more compact
- all the relevant sets can be computed from DivCore

Model sizes for some (Super)S-boxes

Modeling only minimal transitions: (convex)

function	n	#min.trans.	CNF (our)	CNF (optimal)
AES	8	2001	<u>361</u>	234
Misty S7	7	1779	<u>1363</u>	607
Misty S9	9	27 626	<u>21 988</u>	10 403-11 819

Modeling valid transitions: (upper)

function	n	#min.trans.	CNF (our)
Midori-64 Super-Sbox (all keys)	16	14714723	<u>1 912 088</u>
LED Super-Sbox (all keys)	16	8 458 909	<u>319 606</u>
LED MixColumn (linear)	16	177 643 913	<u>33 412</u>
Randomly gen. 32-bit S-box	32	?	<u>2958</u>

Plan

1 Introduction

- Division property
- Monotonicity and convexity on \mathbb{F}_2^n
- Parity sets: formalization of division property

2 New insights

- New characterizations of transitions
- Compact representation
- Completeness and the symmetry of the division core
- Convexity of minimal transitions

3 Algorithms

4 Application to LED

function
$$\operatorname{Transform}_f(X \in \mathbb{F}_2^{2^n})$$

 b Complexity: $O(n2^n)$
for all $i \in \{0, ..., n-1\}$ do
for all $j \in \{0, ..., 2^n - 1\}$, s.t. j has $(n - 1 - i)$ -th bit set do
 $(X_{j-2^i}, X_j) \leftarrow f(X_{j-2^i}, X_j)$

function $\operatorname{Transform}_{f}(X \in$	$\mathbb{F}_2^{2^n}$) \triangleright Compl	exity: $O(n2^n)$
for all $i \in \{0,, n - $	1} do	
for all $j \in \{0, \ldots, 2\}$	$\{2^n-1\}$, s.t. j has $(n-1-i)$ -th bit set do	
$(X_{j-2^i},X_j) \leftarrow f$	(X_{j-2^i},X_j)	
function f $f(a, b)$	effect of $\operatorname{Transform}_{f}$	
XOR-up $(a, b \oplus a)$	compute ANF (involution)	—

function Tra	$\operatorname{nsform}_{f}(X \in$	$\mathbb{F}_2^{2^n}$)	▷ Complexity:	$O(n2^n)$
for all $i \in$	$\{0, \ldots, n-1\}$	1} do		
for all	$j \in \{0,\ldots,2\}$	$\mathbb{R}^n-1\}$, s.t. j has $(n-1-i)$ -th bit	t set do	
$(X_j$	$_{-2^i}, X_j) \leftarrow f$	(X_{j-2^i}, X_j)		
function f	f(a, b)	effect of $\operatorname{Transform}_{f}$		
XOR-up XOR-down	$(a,b\oplus a)\ (a\oplus b,b)$	compute ANF (involution) compute ParitySet (involution)		

function Tran	$\operatorname{nsform}_{f}(X \in$	$\mathbb{F}_2^{2^n}$) \triangleright	· Complexity:	$O(n2^n)$
for all $i \in$	$\{0,\ldots,n-1\}$			
tor all	$J \in \{0, \dots, 2$ $a_i X_i\} \leftarrow f($	$(n-1)$, s.t. j has $(n-1-i)$ -th bit s $(X_{i} \circ i X_{i})$	et do	
	-2^{\prime} , γ	×y=2', ×y)		
function <i>f</i>	f(a, b)	effect of $Transform_f$		
XOR-up	$(a,b\oplus a)$	compute ANF (involution)		
XOR-down	$(a \oplus b, b)$	compute ParitySet (involution)		
OR-up	$(a, b \lor a)$	compute UpperClosure		
OR-down	$(a \lor b, b)$	compute LowerClosure		

function Tra	$\operatorname{ansform}_f(X \in \mathbb{R})$	$\mathbb{F}_2^{2^n}) \qquad \qquad \triangleright \text{ Complexity: } O$	0(<i>n</i> 2 ^{<i>n</i>})
for all (X	$I_{j \in \{0, \dots, 2, j \in \{0, \dots, 2, j \in j\}}$	$\{2^n-1\}$, s.t. j has $(n-1-i)$ -th bit set do (X_{j-2^i}, X_j)	
function <i>f</i>	f(a, b)	effect of $\operatorname{Transform}_{f}$	
XOR-up	$(a,b\oplus a)$	compute ANF (involution)	
XOR-down	$(a \oplus b, b)$	compute ParitySet (involution)	
OR-up	$(a, b \lor a)$	compute UpperClosure	
OR-down	$(a \lor b, b)$	compute LowerClosure	
LESS-up	$(a, b \wedge \neg a)$	compute MinSet (after Transform _{OR-up})	
MORE-down	$(a \wedge \neg b, b)$	compute $MaxSet$ (after $Transform_{OR-down}$)	

function $\operatorname{Transform}_f(X \in \mathbb{F}_2^{2^n})$ \triangleright Complexity: $O(n2^n)$ for all $i \in \{0, ..., n-1\}$ do for all $j \in \{0, ..., 2^n - 1\}$, s.t. j has (n - 1 - i)-th bit set do $(X_{j-2^i}, X_j) \leftarrow f(X_{j-2^i}, X_j)$

function MinDPPT($F : \mathbb{F}_2^n \to \mathbb{F}_2^m :$ a lookup table) \triangleright Complexity: $O((n+m)2^{n+m})$ $D \leftarrow$ indicator vector of $\Gamma_F (\in \mathbb{F}_2^{2^{n+m}})$ $D \leftarrow \text{Transform}_{\text{XOR-down}}(D)$ $D \leftarrow \text{Transform}_{\text{LESS-up}}(D)$, only with i < n in the first loop return $\{(\neg u, v) \mid (u, v) \in D\}$

function $\operatorname{Transform}_f(X \in \mathbb{F}_2^{2^n})$ b Complexity: $O(n2^n)$ for all $i \in \{0, ..., n-1\}$ do for all $j \in \{0, ..., 2^n - 1\}$, s.t. j has (n - 1 - i)-th bit set do $(X_{j-2^i}, X_j) \leftarrow f(X_{j-2^i}, X_j)$

function MinDPPT($F : \mathbb{F}_2^n \to \mathbb{F}_2^m$: a lookup table) \triangleright Complexity: $O((n+m)2^{n+m})$ $D \leftarrow$ indicator vector of $\Gamma_F (\in \mathbb{F}_2^{2^{n+m}})$ $D \leftarrow \text{Transform}_{\text{XOR-down}}(D)$ $D \leftarrow \text{Transform}_{\text{LESS-up}}(D)$, only with i < n in the first loop return $\{(\neg u, v) \mid (u, v) \in D\}$

DPPT, DivCore, etc. for $F : \mathbb{F}_2^n \to \mathbb{F}_2^n$ in $O(n2^{2n})$

Plan

1 Introduction

- Division property
- Monotonicity and convexity on \mathbb{F}_2^n
- Parity sets: formalization of division property

2 New insights

- New characterizations of transitions
- Compact representation
- Completeness and the symmetry of the division core
- Convexity of minimal transitions

3 Algorithms

4 Application to LED

Integral distinguishers for LED

- LED [GPPR11] is a lightweight 64-bit block cipher
- Best integral distinguisher is on 7 rounds due to [HWW20]⁴, using an SMT solver on S-box model with precise model for the linear layer.

⁵(ToSC'20) Derbez, Fouque. Increasing precision of division property.

⁴(ToSC'20) Hu, Wang, Wang. Finding bit-based division property for ciphers with complex linear layers.

Integral distinguishers for LED

- LED [GPPR11] is a lightweight 64-bit block cipher
- Best integral distinguisher is on 7 rounds due to [HWW20]⁴, using an SMT solver on S-box model with precise model for the linear layer.
- [DF20]⁵ applied ad-hoc division property search on Super-Sbox models with linear combinations of Midori, SKINNY, and HIGHT, but for LED the running time was not reasonable
- The hardness lies in the complex MixColumns (MDS) layer of LED, which creates a lot of transitions (177M)

⁵(ToSC'20) Derbez, Fouque. Increasing precision of division property.

⁴(ToSC'20) Hu, Wang, Wang. Finding bit-based division property for ciphers with complex linear layers.

Application to LED

With our compact modeling:

- one MixColumn can be modeled by <40k CNF clauses (vs 177M minimal transitions)
- one Super-Sbox can be modeled by <400k CNF clauses (vs 8.5M minimal transitions)
- using Kissat solver, the Super-Sbox model with linear combinations of 8-round LED can be solved in about 1 minute

Application to LED

With our compact modeling:

- one MixColumn can be modeled by <40k CNF clauses (vs 177M minimal transitions)
- one Super-Sbox can be modeled by <400k CNF clauses (vs 8.5M minimal transitions)
- using Kissat solver, the Super-Sbox model with linear combinations of 8-round LED can be solved in about 1 minute
- exhausting all linear combinations showed NO integral distinguishers...
- existence of 8-round integral distinguisher for LED remains open, but one has to go beyond the Super-Sbox model or use perfect variants of division property to progress

An example LED trail

	1111	1111	1111		1111	1111	1111	1111		1111	1011	1111	1101		0100	0011	1000	1000	
11	1111	1111	1111	SuperSbox	0010	1111	1111	1111	$SR\circMC\circSR$	1111	1111	1101	1111	SuperSbox	0001	1111	0100	1111	
(α, x)) [⊥] 1111	1111	1111		1111	1111	1111	1111		1111	1111	1111	1111		1111	0001	0100	1010	
	1111	1111	1111		0110	1111	1111	1111		1101	1111	1101	1111		1111	1111	0110	0100	
									$SR\circMC\circSR$										
000	0 0000	1111	0000		0000	0000	0100	0000		0000	0000	0000	0000			0000	0000	0000	
011	1 1011	0000	0011	SuperSbox	1010	0000	0000	0100	$SR \circ MC \circ SR$	0000	0000	0000	0000	SuperSbox	11	0000	0000	0000	
101	1 1101	1010	1101		0000	0000	0000	0000		1011	0000	0000	0000		$\langle \beta, x \rangle$	0000	0000	0000	
001	1 1101	0111	0111		0000	0010	0010	0000		0111	0000	0000	0000			0000	0000	0000	

An example LED trail

					u_{α}													
	1111	1111	1111		1111	1111	1111	1111		1111	1011	1111	1101		0100	0011	1000	1000
1 ¹⁵	1111	1111	1111	SuperSbox	0010	1111	1111	1111	$SR\circMC\circSR$	1111	1111	1101	1111	SuperSbox	0001	1111	0100	1111
$\langle \alpha, x \rangle^{\perp}$	1111	1111	1111		1111	1111	1111	1111		1111	1111	1111	1111		1111	0001	0100	1010
	1111	1111	1111		0110	1111	1111	1111		1101	1111	1101	1111		1111	1111	0110	0100
SR ∘ MC ∘ SR																		
0000	0000	1111	0000		0000	0000	0100	0000		0000	0000	0000	0000			0000	0000	0000
0111	1011	0000	0011	SuperSbox	1010	0000	0000	0100	$SR \circ MC \circ SR$	0000	0000	0000	0000	SuperSbox	11	0000	0000	0000
1011	1101	1010	1101		0000	0000	0000	0000		1011	0000	0000	0000		$\langle \beta, x \rangle$	0000	0000	0000
0011	1101	0111	0111		0000	0010	0010	0000		0111	0000	0000	0000			0000	0000	0000
										VB								

- 255 columns u_{α} to cover all possible $\alpha \neq 0$
- 255 columns v_{β} to cover all possible $\beta \neq 0$

An example LED trail

					u_{α}													
	1111	1111	1111		1111	1111	1111	1111		1111	1011	1111	1101		0100	0011	1000	1000
1^{15}	1111	1111	1111	SuperSbox	0010	1111	1111	1111	$SR\circMC\circSR$	1111	1111	1101	1111	SuperSbox	0001	1111	0100	1111
$(\alpha, x)^{\perp}$	1111	1111	1111		1111	1111	1111	1111		1111	1111	1111	1111		1111	0001	0100	1010
	1111	1111	1111		0110	1111	1111	1111		1101	1111	1101	1111		1111	1111	0110	0100
	SR ∘ MC ∘ SR																	
0000	0000	1111	0000		0000	0000	0100	0000		0000	0000	0000	0000			0000	0000	0000
0111	1011	0000	0011	SuperSbox	1010	0000	0000	0100	$SR \circ MC \circ SR$	0000	0000	0000	0000	SuperSbox	11	0000	0000	0000
1011	1101	1010	1101		0000	0000	0000	0000		1011	0000	0000	0000		$\langle \beta, x \rangle$	0000	0000	0000
0011	1101	0111	0111		0000	0010	0010	0000		0111	0000	0000	0000			0000	0000	0000
										VB								

- 255 columns u_{α} to cover all possible $\alpha \neq 0$
- 255 columns v_{β} to cover all possible $\beta \neq 0$
- on practice, \approx 30 trails are sufficient to cover all (u_{α}, v_{β}) pairs (per each of the input/output Super-Sbox positions)

The End

More in the paper:

1 advanced algorithm for computing division core for "heavy" S-boxes (up to 32 bits)

Open problems:

- **1** compressing CNF models into compact MILP models
- 2 existence of 8-round integral distinguisher for LED (still open)
- 3 more applications?

Implementation: github.com/CryptoExperts/AC21-divprop-convexity

- **1** Python bindings for a C++ implementation
- **2** Reproducing/verifying results
- 3 Random 32-bit S-box modeling

ia.cr/2021/1285

[BC16] Christina Boura and Anne Canteaut. Another view of the division property. In Matthew Robshaw and Jonathan Katz, editors, CRYPTO 2016, Part I. volume 9814 of LNCS, pages 654-682. Springer, Heidelberg, 2016. [Car20] Claude Carlet. Graph indicators of vectorial functions and bounds on the algebraic degree of composite functions. *IEEE Transactions on Information Theory*, pages 1–1, 2020. [DF20] Patrick Derbez and Pierre-Alain Fouque. Increasing precision of division property. IACR Trans. Symm. Cryptol., 2020(4):173-194, 2020. [GPPR11] Jian Guo, Thomas Peyrin, Axel Poschmann, and Matthew J. B. Robshaw. The LED block cipher.

In Bart Preneel and Tsuyoshi Takagi, editors, *CHES 2011*, volume 6917 of *LNCS*, pages 326–341. Springer, Heidelberg, 2011.

[HWW20] Kai Hu, Qingju Wang, and Meiqin Wang. IACR transactions class documentation. IACR Trans. Symm. Cryptol., 2020(1):396–424, 2020.

[Tod15] Yosuke Todo.

Structural evaluation by generalized integral property. In Elisabeth Oswald and Marc Fischlin, editors, *EUROCRYPT 2015, Part I*, volume 9056 of *LNCS*, pages 287–314. Springer, Heidelberg, 2015.