Dummy Shuffling against Algebraic Attacks in White-box Implementations

UNIVERSITÉ DU LUXEMBOURG securityandtrust.lu

Alex Biryukov¹, Aleksei Udovenko^{2,1}

¹DCS and SnT. University of Luxembourg

²CryptoExperts

EUROCRYPT 2021, October 11, 2021

Plan

1 Introduction

- White-box cryptography
- Grey-box algebraic attacks
- Algebraic security
- 2 Back to the roots Shuffling
 - Basic shuffling
 - Algebraic insecurity of dummyless shuffling
 - Dummy shuffling
 - Linear security of dummy shuffling
 - Provably security via refreshing
 - Full degree security
 - Implementation cost estimation

White-box implementations

- Implementation fully available, secret key unextractable
- **Extra**: one-wayness, incompressibility, traitor traceability, ...

White-box implementations

- Implementation fully available, secret key unextractable
- Extra: one-wayness, incompressibility, traitor traceability, ...

- The most challenging direction (this talk): white-box implementations of existing symmetric primitives, e.g. the AES
- "Cryptographic obfuscation"

White-box: industry vs academia

White-box: industry vs academia

- many applications
- strong need for *practical* white-box
- industry does WB: secret designs

White-box: industry vs academia

- many applications
- strong need for *practical* white-box
- industry does WB: secret designs

- theory: approaches using iO, currently impractical
- practical WB-AES/DES: few attempts (2002-2017, [CEJv03], ...), all broken
- powerful grey-box attacks
 [BHMT16](CHES 2016)

Plan

1 Introduction

- White-box cryptography
- Grey-box algebraic attacks
- Algebraic security
- 2 Back to the roots Shuffling
 - Basic shuffling
 - Algebraic insecurity of dummyless shuffling
 - Dummy shuffling
 - Linear security of dummy shuffling
 - Provably security via refreshing
 - Full degree security
 - Implementation cost estimation

White-box: Differential Computation Analysis (DCA)

- DCA = Differential Power Analysis (DPA) applied to white-box implementations [BHMT16]¹
- Most of the existing implementations broken automatically

¹(CHES 2016) Bos, Hubain, Michiels, Teuwen. Differential computation analysis: Hiding your white-box designs is not enough.

White-box: Differential Computation Analysis (DCA)

- DCA = Differential Power Analysis (DPA) applied to white-box implementations [BHMT16]¹
- Most of the existing implementations broken automatically
- Side-channel protections: masking schemes, shuffling

¹(CHES 2016) Bos, Hubain, Michiels, Teuwen. Differential computation analysis: Hiding your white-box designs is not enough.

White-box: Differential Computation Analysis (DCA)

- DCA = Differential Power Analysis (DPA) applied to white-box implementations [BHMT16]¹
- Most of the existing implementations broken automatically
- Side-channel protections: masking schemes, shuffling

Can we apply these countermeasures to white-box implementations?

¹(CHES 2016) Bos, Hubain, Michiels, Teuwen. Differential computation analysis: Hiding your white-box designs is not enough.

Weakness of linear masking

- assume a sensitive function s being protected
- linear masking: $\exists v_1, \ldots, v_t$ shares,

 $v_1 \oplus \ldots \oplus v_t = s$

Weakness of linear masking

- assume a sensitive function s being protected
- linear masking: $\exists v_1, \ldots, v_t$ shares,

 $v_1 \oplus \ldots \oplus v_t = s$

Problem: there exists a linear combination of computed functions that equals the sensitive function!

010000111000 000100011101

010000111000 000100011101 000101011110

 \times

 $s = Sbox_i(pt_i \oplus k_i)$

\rightarrow \otimes \checkmark		$s = \text{Sbox}_i(pt_i \oplus k_i)$
/010000111000 00		$\langle 0 \rangle$
000100011101 00		0
000101011110 00		1
101010111011 01		0
001011100011 00		1
011011011100 00		0
000101100111 00		1
001010001010 00		1
110110101101 10		0
111101100110 11		0
010111111010 00		1
111001110110 11		0
10100000101 01		1
010011100000 00		0
011011000100 00		0
$100101010010 \mid 00$	/	1/

010000111000	0000
000100011101	0000
000101011110	0000
101010111011	0101
001011100011	0001
011011011100	0000
000101100111	0001
001010001010	0000
110110101101	1010
111101100110	1110
010111111010	0000
111001110110	1100
10100000101	0100
010011100000	0000
011011000100	0000
100101010010	0010

\swarrow \vee		s =	Sbox _i (µ	ot _i ($ \oplus k_i) = v_1 v_2 \oplus v_3 $
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	×	$s = \begin{pmatrix} 0 \\ \vdots \\ 0 \\ 1 \\ 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$	= Sbox _i (µ	$ bt_i \in \{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0$	$(interpret} onumber \in V_1 V_2 \oplus V_3$
				1/	

Takeaway:

higher-degree schemes can be attacked, but at a higher cost

Generalization II: noisy linear attack (2/2)

General attack framework: Learning Parity with Noise (LPN)

Takeaway:

- good low-degree approximations are sufficient for an attack
- need to ensure sufficient weight of the error term e

Generalization III: input restriction (1/3)

- assume $f = s \cdot r$ is computed/shared in the circuit, r is pseudorandom
- linear algebra attack would fail

Generalization III: input restriction (1/3)

- assume $f = s \cdot r$ is computed/shared in the circuit, r is pseudorandom
- linear algebra attack would fail
- observation: $s = 0 \Rightarrow f = 0$

Generalization III: input restriction (2/3)

 $s = \text{Sbox}_i(pt_i \oplus k_i)$ `10000111000 \times =? ? ?

Generalization III: input restriction (2/3)

Generalization III: input restriction (2/3)

Generalization III: input restriction (3/3)

Takeaway:

protection should not depend critically on "predictable" values such as s

Plan

1 Introduction

- White-box cryptography
- Grey-box algebraic attacks
- Algebraic security
- 2 Back to the roots Shuffling
 - Basic shuffling
 - Algebraic insecurity of dummyless shuffling
 - Dummy shuffling
 - Linear security of dummy shuffling
 - Provably security via refreshing
 - Full degree security
 - Implementation cost estimation

Algebraic security (BU-model [BU18], ASIACRYPT 2018)

1 random bits allowed

- as in classic masking
- model unpredictability
- in WB impl. as **pseudorandom**

Algebraic security (BU-model [BU18], ASIACRYPT 2018)

1 random bits allowed

- as in classic masking
- model unpredictability
- in WB impl. as **pseudorandom**

2 security requirement: any non-constant f ∈ span {v_i}_i must have sufficient error/noise in any fixed input

Algebraic security (BU-model [BU18], ASIACRYPT 2018)

1 random bits allowed

- as in classic masking
- model unpredictability
- in WB impl. as pseudorandom

2 security requirement: any non-constant f ∈ span {v_i}_i must have sufficient error/noise in any fixed input

3 protects against the generalizations

• Nonlinear masking: $\exists v_1, \ldots, v_t$ shares

$$f(\mathbf{v}_1,\ldots,\mathbf{v}_t)=\mathbf{s}$$

• Nonlinear masking: $\exists v_1, \ldots, v_t$ shares

$$f(\mathbf{v}_1,\ldots,\mathbf{v}_t)=\mathbf{s}$$

• $[BU18]^2$: provably secure minimalist quadratic masking (deg f = 2):

 $f(v_1, v_2, v_3) = v_1v_2 \oplus v_3$

²(ASIACRYPT 2018) Biryukov, Udovenko. Attacks and countermeasures for white-box designs.

• Nonlinear masking: $\exists v_1, \ldots, v_t$ shares

$$f(\mathbf{v_1},\ldots,\mathbf{v_t}) = \mathbf{s}$$

• $[BU18]^2$: provably secure minimalist quadratic masking (deg f = 2):

$$f(\mathbf{v}_1,\mathbf{v}_2,\mathbf{v}_3)=\mathbf{v}_1\mathbf{v}_2\oplus\mathbf{v}_3$$

 [SEL21]³: generalization and combination with linear masking, concrete & proof for deg f ≤ 3:

$$f(\mathbf{v}_1,\ldots,\mathbf{v}_t)=(\mathbf{v}_1\mathbf{v}_2\ldots\mathbf{v}_d)\oplus\mathbf{v}_{d+1}\oplus\ldots\oplus\mathbf{v}_t$$

 $^{^2}_{-}$ (ASIACRYPT 2018) Biryukov, Udovenko. Attacks and countermeasures for white-box designs.

³(TCHES 2021) Seker, Eisenbarth, Liskiewicz. A white-box masking scheme resisting computational and algebraic attacks.

Nonlinear masking: $\exists v_1, \ldots, v_t$ shares

$$f(\mathbf{v_1},\ldots,\mathbf{v_t}) = \mathbf{s}$$

• $[BU18]^2$: provably secure minimalist quadratic masking (deg f = 2):

$$f(\mathbf{v}_1,\mathbf{v}_2,\mathbf{v}_3)=\mathbf{v}_1\mathbf{v}_2\oplus\mathbf{v}_3$$

■ [SEL21]³: generalization and combination with linear masking, concrete & proof for deg f < 3:

$$f(\mathbf{v}_1,\ldots,\mathbf{v}_t)=(\mathbf{v}_1\mathbf{v}_2\ldots\mathbf{v}_d)\oplus\mathbf{v}_{d+1}\oplus\ldots\oplus\mathbf{v}_t$$

Proofs are involved, larger security degrees are hard

 ²(ASIACRYPT 2018) Biryukov, Udovenko. Attacks and countermeasures for white-box designs.
³(TCHES 2021) Seker, Eisenbarth, Liskiewicz. A white-box masking scheme resisting computational and algebraic attacks.

Plan

1 Introduction

- White-box cryptography
- Grey-box algebraic attacks
- Algebraic security

2 Back to the roots - Shuffling

- Basic shuffling
- Algebraic insecurity of dummyless shuffling
- Dummy shuffling
- Linear security of dummy shuffling
- Provably security via refreshing
- Full degree security
- Implementation cost estimation

Basic shuffling

Basic shuffling

Basic shuffling

Plan

1 Introduction

- White-box cryptography
- Grey-box algebraic attacks
- Algebraic security

2 Back to the roots - Shuffling

Basic shuffling

- Dummy shuffling
- Linear security of dummy shuffling
- Provably security via refreshing
- Full degree security
- Implementation cost estimation

- Generally, all symmetric functions are leaked!
- No matter how shuffling is implemented...

- Generally, all symmetric functions are leaked!
- No matter how shuffling is implemented...

But is it exploitable?

Plan

1 Introduction

- White-box cryptography
- Grey-box algebraic attacks
- Algebraic security

2 Back to the roots - Shuffling

- Basic shuffling
- Algebraic insecurity of dummyless shuffling
- Dummy shuffling
- Linear security of dummy shuffling
- Provably security via refreshing
- Full degree security
- Implementation cost estimation

Dummy shuffling

Dummy shuffling

Dummy shuffling

1 Introduction

- White-box cryptography
- Grey-box algebraic attacks
- Algebraic security

- Basic shuffling
- Algebraic insecurity of dummyless shuffling
- Dummy shuffling
- Linear security of dummy shuffling
- Provably security via refreshing
- Full degree security
- Implementation cost estimation

Linear security of dummy shuffling

Definition

Let C be a slot implementation. Denote by $e_1(C)$ the minimum error⁴ of a non-constant function from the linear span of C:

$$\mathsf{P}_1(\mathcal{C}) \coloneqq \mathsf{min} \left\{ \mathsf{err}(f) \mid f \in (\mathrm{span} \ \mathcal{C}) \setminus \{0,1\} \right\}$$

Theorem

The dummy shuffling scheme with slots C is algebraically secure with the minimum error τ lower bounded as:

$$\tau \geq \frac{\# dummy \ slots}{\# slots} \cdot e_1(C)$$

⁴The minimum distance to a constant function

1 Introduction

- White-box cryptography
- Grey-box algebraic attacks
- Algebraic security

- Basic shuffling
- Algebraic insecurity of dummyless shuffling
- Dummy shuffling
- Linear security of dummy shuffling
- Provably security via refreshing
- Full degree security
- Implementation cost estimation

Provably security via refreshing

Provably security via refreshing

Theorem

The dummy shuffling scheme with **refreshed** implementations of slots is degree-1 algebraically secure with the minimum error τ lower bounded as:

$$au \geq rac{\# dummy \ slots}{\# slots} \cdot rac{1}{4} \qquad (e_1(ilde{C}) \geq rac{1}{4})$$

1 Introduction

- White-box cryptography
- Grey-box algebraic attacks
- Algebraic security

- Basic shuffling
- Algebraic insecurity of dummyless shuffling
- Dummy shuffling
- Linear security of dummy shuffling
- Provably security via refreshing
- Full degree security
- Implementation cost estimation

Full degree security

Theorem (Main)

The dummy shuffling scheme with **refreshed** implementations using 1 main slot is

degree-d algebraically secure $(1 \le d \le \#dummy \ slots)$

with the minimum error τ lower bounded as:

$$\tau \geq \frac{\# \textit{slots} - \textit{d}}{\# \textit{slots}} \cdot \frac{1}{2^{2\textit{d}}}$$

1 Introduction

- White-box cryptography
- Grey-box algebraic attacks
- Algebraic security

- Basic shuffling
- Algebraic insecurity of dummyless shuffling
- Dummy shuffling
- Linear security of dummy shuffling
- Provably security via refreshing
- Full degree security
- Implementation cost estimation

Implementation cost estimation

Protection degree	XOR	AND	Error $ au$	Ref.
1	33 + 6\$	43 + 6\$	1/16	[BU18, Alg. 3]
1	7	16 + 2\$	1/16	[SEL21]
$1 \hspace{0.1in} (t=1)$	2	8+1\$	1/8	This work
2	16	46 + 3\$	1/4096	[SEL21]
2 ($t = 2$)	3	14 + 2\$	1/48	This work
$d \ (t \ge d)$	t+1	(6t + 2) + t\$	$\frac{t+1-d}{t+1}\cdot \frac{1}{2^{2d}}$	This work

Estimation of gate complexity for protections against algebraic attacks per original AND/XOR gate. \$ stands for one random bit generation. t is the number of dummy slots.

The End

More in the paper:

- 1 Matching degree-(d + 1) attack on d dummy slots
- 2 A proof-of-concept implementation of *public* dummy shuffling, relying on a single slot implementation (used in the WhibOx 2019 contest surviving challenge #100)

Open problems:

- 1 Concrete evaluation of security against LPN-based attacks
- 2 Extending the algebraic security model to cover the full implementation
- 3 Are there more generic value-based attacks to consider, or does algebraic&correlation security cover it? (excluding fault attacks and data-dependency analysis).
 - ia.cr/2021/290 github.com/CryptoExperts/EC21-dummy-shuffling

[BHMT16] Joppe W. Bos, Charles Hubain, Wil Michiels, and Philippe Teuwen. Differential computation analysis: Hiding your white-box designs is not enough.

In Benedikt Gierlichs and Axel Y. Poschmann, editors, *CHES 2016*, volume 9813 of *LNCS*, pages 215–236. Springer, Heidelberg, 2016.

[BU18] Alex Biryukov and Aleksei Udovenko. Attacks and countermeasures for white-box designs. In Thomas Peyrin and Steven Galbraith, editors, ASIACRYPT 2018, Part II, volume 11273 of LNCS, pages 373–402. Springer, Heidelberg, 2018.

[CEJv03] Stanley Chow, Philip A. Eisen, Harold Johnson, and Paul C. van Oorschot. White-box cryptography and an AES implementation. In Kaisa Nyberg and Howard M. Heys, editors, SAC 2002, volume 2595 of LNCS, pages 250–270. Springer, Heidelberg, 2003. [SEL21] Okan Seker, Thomas Eisenbarth, and Maciej Liskiewicz. A white-box masking scheme resisting computational and algebraic attacks. *IACR TCHES*, 2021(2):61–105, 2021.