Advancing the Meet-in-the-Filter Technique: Applications to CHAM and KATAN

Alex Biryukov ${ }^{1}$, Je Sen Teh ${ }^{1,2}$, Aleksei Udovenko ${ }^{1}$
${ }^{1} \mathrm{SnT}$, University of Luxembourg
${ }^{2}$ University Sains Malaysia
Selected Areas in Cryptography 2022 $25^{\text {th }}$ August 2022

DFG
Deutsche
Forschungsgemeinschaft

Overview

Meet-in-the-Filter (MiF)

- Recently proposed framework for differential cryptanalysis (Biryukov, Santos, Teh, Udovenko, and Velichkov 2022)
- Combines (variations of) techniques from the literature:

1 differential meet-in-the-middle, e.g. (Rechberger, Soleimany, and Tiessen 2018)
2 trail-assisted bit-based key-recovery, e.g. (Dinur 2014)
3 dynamic counting to trade data for time reduction

- Applied to Speck, automated but tedious complexity analysis

Overview

Meet-in-the-Filter (MiF)

■ Recently proposed framework for differential cryptanalysis (Biryukov, Santos, Teh, Udovenko, and Velichkov 2022)

- Combines (variations of) techniques from the literature:

1 differential meet-in-the-middle, e.g. (Rechberger, Soleimany, and Tiessen 2018)
2 trail-assisted bit-based key-recovery, e.g. (Dinur 2014)
3 dynamic counting to trade data for time reduction

- Applied to Speck, automated but tedious complexity analysis

This work:

1 Theoretical aspects and understanding of MiF
2 Simplified analysis methods (pen-and-paper)
3 Based on trail counting
4 Applications: CHAM-64 and KATAN-32/48/64

Plan

1 Meet-in-the-Filter Technique

2 Theory

3 Application to CHAM

4 Application to KATAN

5 Conclusions

Differential Cryptanalysis

Differential Cryptanalysis

$$
\Delta_{I N} \underset{\text { differential }}{r \text { rounds }} \Delta_{\text {OUT }} \stackrel{k \text { rounds }}{\text { key recovery }} \Delta_{C}, C_{1}, C_{2}
$$

Differential Cryptanalysis

$$
\Delta_{I N} \xrightarrow[\text { differential }]{r \text { rounds }} \Delta_{\text {OUT }} \stackrel{k \text { rounds }}{\text { key recovery }} \Delta_{C}, C_{1}, C_{2}
$$

1 how to find key candidates efficiently?
[2 when is such attack worth it?

Meet-in-the-Filter

1 precompute the cluster of trails $\Delta_{\text {OUT }} \rightarrow \Delta_{X}$
2 for each observed Δ_{C} :
1 compute the filter-set of trails $\Delta_{Y} \rightarrow \Delta_{C}$
$\sqrt{2}$ intersect to get trails $\Delta_{\text {OUT }} \rightarrow\left(\Delta_{X}=\Delta_{Y}\right) \rightarrow \Delta_{C}$
3 run trail-assisted key recovery

Plan

1 Meet-in-the-Filter Technique

2 Theory

3 Application to CHAM

4 Application to KATAN

5 Conclusions

Trail Count vs Average Trail Probability

Theorem

Let T be the set of all k-round trails starting at Δ. Then, the average probability of a trail in T is equal to $1 /|T|$.

Total $\operatorname{Pr}=1$
Avg $\operatorname{Pr}=\frac{1}{|T|}$

Complexity Analysis Overview

Complexity Analysis Overview

Complexity Analysis Overview

entities
(time complexity)

Complexity Analysis Overview

entities

Complexity Analysis Overview

Complexity Analysis Overview

Complexity Analysis Overview

Computing/Estimating Round Filter Strength

Computing/Estimating Round Filter Strength

Computing/Estimating Round Filter Strength

Trail-based Plaintext Structures

- Compute all possible backwards trails $\Delta_{I N} \rightarrow \Delta_{P}$
- As long as all $\Delta_{P}{ }^{i}$ fit a structure, e.g.

$$
\Delta_{P}{ }^{i} \preceq 00 * * * * * 0 *
$$

Trail-based Plaintext Structures

- Compute all possible backwards trails $\Delta_{I N} \rightarrow \Delta_{P}$
- As long as all $\Delta_{P}{ }^{i}$ fit a structure, e.g.

$$
\Delta_{P}{ }^{i} \preceq 00 * * * * * 0 *
$$

- "Free" rounds if can combine the top/bottom filters: $1 / \mathrm{q}$ trails of prob. q

Plan

1 Meet-in-the-Filter Technique

2 Theory

3 Application to CHAM

4 Application to KATAN

5 Conclusions

CHAM cipher

- Based on the ARX construction

1 CHAM-64/128-88 rounds
2 CHAM-128/128-112 rounds
3 CHAM-128/256-120 rounds

- Key schedule updates subkey words linearly and independently
- No trail clustering over 4 rounds

11 -round trail fully determined from its input \& output differences

Attack Complexities for CHAM-64 (+Literature)

Table: Summary of differential attacks on CHAM-64 (single-key setting).

Type	Rounds	Time	Data	Memory	Ref
Single Trail Distinguisher	39	-	-	-	(Huang and Wang 2019)
Diff. Distinguisher	44	-	-	-	(Roh, Koo, Jung, Jeong, Lee, Kwon, and Kim
Diff. Key-recovery	52	2^{114}	2^{61}	2^{54}	This Paper

- No prior key recovery attacks

1 Previous work focused on finding differential trails

High-level Attack description

Round split:
14 rounds: plaintext structure, enumerated trails
240 rounds: differential trail $\left(\operatorname{Pr}=2^{-60.05}\right)$
38 rounds: meet-in-the-filter (4 cluster +4 filter)

High-level Attack description

Round split:

14 rounds: plaintext structure, enumerated trails
240 rounds: differential trail $\left(\operatorname{Pr}=2^{-60.05}\right)$
38 rounds: meet-in-the-filter (4 cluster +4 filter)

Attack procedure:

1 Encrypt plaintext structures
2 Enumerate pt/ct pairs and pt-side trails
3 Obtain ct-side trails using MiF
4 Guess-and-determine procedure for two-sided MiF key recovery (exploit relations between subkeys from both sides)

Guessing Illustration (1/2)

Table: Backward extension from difference
$\Delta_{I N}=(0020,0010,1020,2800)$.

Round	\#Trails	Avg.wt/R
-4	$2^{35.67}$	11.87
-3	$2^{23.8}$	11.91
-2	$2^{11.89}$	7.72
-1	$2^{4.17}$	4.17

Table: Forward extension from difference

$$
\Delta_{\text {OUT }}=(2000,1000,2810,0020)
$$

Round	\#Trails	Avg.wt/R
+1	$2^{1.58}$	1.58
+2	$2^{8.12}$	6.54
+3	$2^{15.46}$	7.34
+4	$2^{19.55}$	4.09
+5	$2^{29.89}$	10.34
+6	$2^{39.95}$	10.06
+7	$2^{52.57}$	12.62
+8	$2^{64.84}$	12.27

Guessing Illustration (2/2)

Master key word	Round	Filter	Round	Filter	Total	Time: $2^{0.00}$
$K[0]$	1	$2^{-11.87}$	49	$2^{-10.34}$	$2^{-22.21}$	Trail-keys: $2^{60.05+35.67+64.84-64}$ $K[1]$
2	$2^{-11.91}$	50	$2^{-10.06}$	$2^{-21.97}$	$2^{96.56}$	
$K[2]$	3	$2^{-7.72}$	51	$2^{-12.62}$	$2^{-20.34}$	
$K[3]$	4	$2^{-4.17}$	52	$2^{-12.27}$	$2^{-16.44}$	
$K[4]$	5	$2^{-1.00}$	46	$2^{-6.54}$	$2^{-7.54}$	
$K[5]$	6	$2^{-2.00}$	45	$2^{-1.58}$	$2^{-3.58}$	
$K[6]$	7	$2^{-3.00}$	48	$2^{-4.09}$	$2^{-7.09}$	
$K[7]$	8	$2^{-2.00}$	47	$2^{-7.34}$	$2^{-9.34}$	
all	$1-8$	$2^{-43.68}$	$43-50$	$2^{-64.84}$	$2^{-108.52}$	

Guessing Illustration (2/2)

Master key word	Round	Filter	Round	Filter	Total	Time: $+2^{100.29 ~}$$\rightarrow 2^{100.29}$

Guessing Illustration (2/2)

Master key word	Round	Filter	Round	Filter	Total	Time: $+2^{103.67} \rightarrow 2^{103.80}$
K[0]	1	$2^{-11.87}$	49	$2^{-10.34}$	$2^{-22.21}$	Trail-keys:
K[1]	2	$2^{-11.91}$	50	$2^{-10.06}$	$2^{-21.97}$	$\times 2^{3.38} \rightarrow 2^{103.67}$
$K[2]$	3	$2^{-7.72}$	51	$2^{-12.62}$	$2^{-20.34}$	
$K[3]$	4	$2^{-4.17}$	52	$2^{-12.27}$	$2^{-16.44}$	
K[4]	5	$2^{-1.00}$	46	$2^{-6.54}$	$2^{-7.54}$	
$K[5]$	6	$2^{-2.00}$	45	$2^{-1.58}$	$2^{-3.58}$	
K[6]	7	$2^{-3.00}$	48	$2^{-4.09}$	$2^{-7.09}$	
K[7]	8	$2^{-2.00}$	47	$2^{-7.34}$	$2^{-9.34}$	
all	1-8	$2^{-43.68}$	43-50	$2^{-64.84}$	$2^{-108.52}$	

Guessing Illustration (2/2)

Master key word	Round	Filter	Round	Filter	Total	Time: $+2^{103.67}$$\rightarrow 2^{104.74}$

Guessing Illustration (2/2)

Master key word	Round	Filter	Round	Filter	Total	Time: $+2^{100.04} \rightarrow 2^{104.79}$
K[0]	1	$2^{-11.87}$	49	$2^{-10.34}$	$2^{-22.21}$	- Trail-keys:
K[1]	2	$2^{-11.91}$	50	$2^{-10.06}$	$2^{-21.97}$	$\times 2^{4.09} \rightarrow 2^{100.04}$
$K[2]$	3	$2^{-7.72}$	51	$2^{-12.62}$	$2^{-20.34}$	
K[3]	4	$2^{-4.17}$	52	$2^{-12.27}$	$2^{-16.44}$	
K[4]	5	$2^{-1.00}$	46	$2^{-6.54}$	$2^{-7.54}$	
$K[5]$	6	$2^{-2.00}$	45	$2^{-1.58}$	$2^{-3.58}$	
K[6]	7	$2^{-3.00}$	48	$2^{-4.09}$	$2^{-7.09}$	
K[7]	8	$2^{-2.00}$	47	$2^{-7.34}$	$2^{-9.34}$	
all	1-8	$2^{-43.68}$	43-50	$2^{-64.84}$	$2^{-108.52}$	

Guessing Illustration (2/2)

Master key word	Round	Filter	Round	Filter	Total	Time: $+2^{100.04} \rightarrow 2^{104.84}$
K[0]	1	$2^{-11.87}$	49	$2^{-10.34}$	$2^{-22.21}$	Trail-keys:
$K[1]$	2	$2^{-11.91}$	50	$2^{-10.06}$	$2^{-21.97}$	$\times 2^{-10.06} \rightarrow 2^{89.98}$
$K[2]$	3	$2^{-7.72}$	51	$2^{-12.62}$	$2^{-20.34}$	
$K[3]$	4	$2^{-4.17}$	52	$2^{-12.27}$	$2^{-16.44}$	
K[4]	5	$2^{-1.00}$	46	$2^{-6.54}$	$2^{-7.54}$	
$K[5]$	6	$2^{-2.00}$	45	$2^{-1.58}$	$2^{-3.58}$	
K[6]	7	$2^{-3.00}$	48	$2^{-4.09}$	$2^{-7.09}$	
K[7]	8	$2^{-2.00}$	47	$2^{-7.34}$	$2^{-9.34}$	
all	1-8	$2^{-43.68}$	43-50	$2^{-64.84}$	$2^{-108.52}$	

Guessing Illustration (2/2)

Master key word	Round	Filter	Round	Filter	Total	Time: $+2^{94.11} \rightarrow 2^{104.85}$
	1	$2^{-11.87}$	49	$2^{-10.34}$	$2^{-22.21}$	Trail-keys: $\times[0]$
$K[1]$	2	$2^{-11.91}$	50	$2^{-10.06}$	$2^{-21.97}$	$\times 2^{4.13} \rightarrow 2^{94.11}$
$K[2]$	3	$2^{-7.72}$	51	$2^{-12.62}$	$2^{-20.34}$	
$K[3]$	4	$2^{-4.17}$	52	$2^{-12.27}$	$2^{-16.44}$	
$K[4]$	5	$2^{-1.00}$	46	$2^{-6.54}$	$2^{-7.54}$	
$K[5]$	6	$2^{-2.00}$	45	$2^{-1.58}$	$2^{-3.58}$	
$K[6]$	7	$2^{-3.00}$	48	$2^{-4.09}$	$2^{-7.09}$	
$K[7]$	8	$2^{-2.00}$	47	$2^{-7.34}$	$2^{-9.34}$	
all	$1-8$	$2^{-43.68}$	$43-50$	$2^{-64.84}$	$2^{-108.52}$	

Guessing Illustration (2/2)

Master key word	Round	Filter	Round	Filter	Total	Time: $+2^{94.11} \rightarrow 2^{104.85}$
K[0]	1	$2^{-11.87}$	49	$2^{-10.34}$	$2^{-22.21}$	Trail-keys:
$K[1]$	2	$2^{-11.91}$	50	$2^{-10.06}$	$2^{-21.97}$	$\times 2^{-10.34} \rightarrow 2^{83.77}$
K[2]	3	$2^{-7.72}$	51	$2^{-12.62}$	$2^{-20.34}$	
$K[3]$	4	$2^{-4.17}$	52	$2^{-12.27}$	$2^{-16.44}$	
K[4]	5	$2^{-1.00}$	46	$2^{-6.54}$	$2^{-7.54}$	
$K[5]$	6	$2^{-2.00}$	45	$2^{-1.58}$	$2^{-3.58}$	
$K[6]$	7	$2^{-3.00}$	48	$2^{-4.09}$	$2^{-7.09}$	
K[7]	8	$2^{-2.00}$	47	$2^{-7.34}$	$2^{-9.34}$	
all	1-8	$2^{-43.68}$	43-50	$2^{-64.84}$	$2^{-108.52}$	

Guessing Illustration (2/2)

Master key word	Round	Filter	Round	Filter	Total	Time: $+2^{83.77}$$\rightarrow 2^{104.85}$

Guessing Illustration (2/2)

Master key word	Round	Filter	Round	Filter	Total	Time: $+2^{91.51}$$\rightarrow 2^{104.85}$

Guessing Illustration (2/2)

Master key word	Round	Filter	Round	Filter	Total	Time: $+2^{91.51}$$\rightarrow 2^{104.85}$

Guessing Illustration (2/2)

Master key word	Round	Filter	Round	Filter	Total	Time: $+2^{97.17}$$\rightarrow 2^{104.85}$

Guessing Illustration (2/2)

Master key word	Round	Filter	Round	Filter	Total	Time: $+2^{106.63}$$\rightarrow 2^{107.00}$

Guessing Illustration (2/2)

Master key word	Round	Filter	Round	Filter	Total	Time: $+2^{106.63}$$\rightarrow 2^{107.83}$

Guessing Illustration (2/2)

Master key word	Round	Filter	Round	Filter	Total	Time: $+2^{105.63}$$\rightarrow 2^{108.11}$

Guessing Illustration (2/2)

Master key word	Round	Filter	Round	Filter	Total	Time: $+2^{117.63} \rightarrow 2^{117.63}$
$K[0]$	1	$2^{-11.87}$	49	$2^{-10.34}$	$2^{-22.21}$	Trail-keys:
K[1]	2	$2^{-11.91}$	50	$2^{-10.06}$	$2^{-21.97}$	$\times 2^{14.00} \rightarrow 2^{117.63}$
$K[2]$	3	$2^{-7.72}$	51	$2^{-12.62}$	$2^{-20.34}$	
$K[3]$	4	$2^{-4.17}$	52	$2^{-12.27}$	$2^{-16.44}$	
$K[4]$	5	$2^{-1.00}$	46	$2^{-6.54}$	$2^{-7.54}$	
$K[5]$	6	$2^{-2.00}$	45	$2^{-1.58}$	$2^{-3.58}$	
$K[6]$	7	$2^{-3.00}$	48	$2^{-4.09}$	$2^{-7.09}$	
$K[7]$	8	$2^{-2.00}$	47	$2^{-7.34}$	$2^{-9.34}$	
all	$1-8$	$2^{-43.68}$	$43-50$	$2^{-64.84}$	$2^{-108.52}$	

Guessing Illustration (2/2)

Master key word	Round	Filter	Round	Filter	Total	Time: $+2^{117.63} \rightarrow 2^{118.63}$
$K[0]$	1	$2^{-11.87}$	49	$2^{-10.34}$	$2^{-22.21}$	Trail-keys:
K[1]	2	$2^{-11.91}$	50	$2^{-10.06}$	$2^{-21.97}$	$\times 2^{-1.58} \rightarrow 2^{116.05}$
$K[2]$	3	$2^{-7.72}$	51	$2^{-12.62}$	$2^{-20.34}$	
$K[3]$	4	$2^{-4.17}$	52	$2^{-12.27}$	$2^{-16.44}$	
$K[4]$	5	$2^{-1.00}$	46	$2^{-6.54}$	$2^{-7.54}$	
$K[5]$	6	$2^{-2.00}$	45	$2^{-1.58}$	$2^{-3.58}$	
$K[6]$	7	$2^{-3.00}$	48	$2^{-4.09}$	$2^{-7.09}$	
$K[7]$	8	$2^{-2.00}$	47	$2^{-7.34}$	$2^{-9.34}$	
all	$1-8$	$2^{-43.68}$	$43-50$	$2^{-64.84}$	$2^{-108.52}$	

Plan

1 Meet-in-the-Filter Technique

2 Theory

3 Application to CHAM

4 Application to KATAN

5 Conclusions

KATAN cipher

■ Based on nonlinear feedback shift registers (NLFSR):
KATAN-32/48/64
1 80-bit key
2254 rounds
3 Variants differ in register sizes and location of taps

- Linear key schedule

Attacks Summary and Comparison

Cipher	Rounds	Type	Time	Data	Ref
KATAN-32	117	SK Rectangle	$2^{79.3}$	$2^{27.3}$	(Chen, Teh, Liu, Su, Samsudin, and Xiang 20
	123	SK Diff.	$2^{75.80}$	2^{31}	This Paper
	187	RK Rectangle	$2^{78.4}$	$2^{31.8}$	(Chen, Teh, Liu, Su, Samsudin, and Xiang 20
	206	SK Multi-dim. MitM	2^{79}	3	(Rasoolzadeh and Raddum 2016)
KATAN-48	87	SK Rectangle	2^{78}	$2^{36.7}$	(Chen, Teh, Liu, Su, Samsudin, and Xiang 20
	130	SK Diff.	$2^{73.56}$	2^{45}	This Paper
	150	RK Rectangle	$2^{77.6}$	$2^{47.2}$	(Chen, Teh, Liu, Su, Samsudin, and Xiang 20
	148	SK Multi-dim. MitM	2^{79}	2	(Rasoolzadeh and Raddum 2016)
KATAN-64	72	SK Rectangle	2^{78}	$2^{55.1}$	(Chen, Teh, Liu, Su, Samsudin, and Xiang 20
	109	SK Diff.	$2^{73.65}$	2^{57}	This Paper
	133	RK Rectangle	$2^{78.5}$	$2^{58.4}$	(Chen, Teh, Liu, Su, Samsudin, and Xiang 20
	129	SK Multi-dim. MitM	2^{79}	2	(Rasoolzadeh and Raddum 2016) $14 / 16$

Attacks Summary

- \approx direct MiF application
- no plaintext structure (but free rounds)
- using multiple output differences to reduce data

Attacks Summary

■ \approx direct MiF application

- no plaintext structure (but free rounds)
- using multiple output differences to reduce data

Version	Subkey bits /round	Steps /round	Avg.Prob. (random)	Total Factor /round
KATAN-32	2	1	$2^{-1.76}$	$\times 2^{+0.24}$
KATAN-48	2	2	$2^{-3.52}$	$\times 2^{-1.52}$
KATAN-64	2	3	$2^{-5.28}$	$\times 2^{-3.28}$

Attacks Summary

- \approx direct MiF application
- no plaintext structure (but free rounds)
- using multiple output differences to reduce data

Version	Subkey bits /round	Steps /round	Avg.Prob. (random)	Total Factor /round
KATAN-32	2	1	$2^{-1.76}$	$\times 2^{+0.24}$
KATAN-48	2	2	$2^{-3.52}$	$\times 2^{-1.52}$
KATAN-64	2	3	$2^{-5.28}$	$\times 2^{-3.28}$

■ \Rightarrow better to directly guess "negative" rounds' subkeys and decrypt ciphertexts before running MiF (2 subkey bits / round)

Plan

1 Meet-in-the-Filter Technique

2 Theory

3 Application to CHAM

4 Application to KATAN

5 Conclusions

Conclusions

This work:

- simplified analysis of Meet-in-the-Filter (pen-and-paper)
- tools for analysis of trail distributions
- combining MiF with plaintext structures

■ example applications: attacks on CHAM and KATAN

github.com/aa8a7b82/mif

ia.cr/2022/xxxx

Open problems:

- similar simplified theory for dynamic counting
- more applications

References I

Albrecht, Martin R. and Gregor Leander (2012). "An All-In-One Approach to Differential Cryptanalysis for Small Block Ciphers". In: Selected Areas in Cryptography. Vol. 7707. Lecture Notes in Computer Science. Springer, pp. 1-15.
Biham, Eli and Adi Shamir (1993). Differential Cryptanalysis of the Data Encryption Standard. Berlin, Heidelberg: Springer-Verlag. ISBN: 0387979301.
Biryukov, Alex, Luan Cardoso dos Santos, Je Sen Teh, Aleksei Udovenko, and Vesselin Velichkov (2022). Meet-in-the-Filter and Dynamic Counting with Applications to Speck. Cryptology ePrint Archive, Paper 2022/673. https://eprint.iacr.org/2022/673.
Chen, Jiageng, Jesen Teh, Zhe Liu, Chunhua Su, Azman Samsudin, and Yang Xiang (2017). "Towards Accurate Statistical Analysis of Security Margins: New Searching Strategies for Differential Attacks". In: IEEE Trans. Computers 66.10, pp. 1763-1777.

References II

Dinur, Itai (Aug. 2014). "Improved Differential Cryptanalysis of Round-Reduced Speck". In: SAC 2014. Ed. by Antoine Joux and Amr M. Youssef. Vol. 8781. LNCS. Springer, Heidelberg, pp. 147-164. DOI: 10.1007/978-3-319-13051-4_9.
Huang, Mingjiang and Liming Wang (2019). "Automatic Tool for Searching for Differential Characteristics in ARX Ciphers and Applications". In: INDOCRYPT 2019. Vol. 11898. LNCS. Springer, pp. 115-138.
Isobe, Takanori, Yu Sasaki, and Jiageng Chen (2013). "Related-Key Boomerang Attacks on KATAN32/48/64". In: ACISP. Vol. 7959. Lecture Notes in Computer Science. Springer, pp. 268-285.
Knellwolf, Simon, Willi Meier, and María Naya-Plasencia (2010). "Conditional Differential Cryptanalysis of NLFSR-Based Cryptosystems". In: ASIACRYPT. Vol. 6477. Lecture Notes in Computer Science. Springer, pp. 130-145.

References III

Knellwolf, Simon, Willi Meier, and María Naya-Plasencia (2011). "Conditional
Differential Cryptanalysis of Trivium and KATAN". In: Selected Areas in
Cryptography. Vol. 7118. Lecture Notes in Computer Science. Springer, pp. 200-212.
Rasoolzadeh, Shahram and Håvard Raddum (2016). "Multidimensional Meet in the
Middle Cryptanalysis of KATAN". In: IACR Cryptol. ePrint Arch., p. 77.
Rechberger, Christian, Hadi Soleimany, and Tyge Tiessen (2018). "Cryptanalysis of
Low-Data Instances of Full LowMCv2". In: IACR Trans. Symm. Cryptol. 2018.3,
pp. 163-181. ISSN: 2519-173X. DOI: 10.13154/tosc.v2018.i3.163-181.
Roh, Dongyoung, Bonwook Koo, Younghoon Jung, Ilwoong Jeong, Donggeon Lee, Daesung Kwon, and Woo-Hwan Kim (2019). "Revised Version of Block Cipher CHAM". In: ICISC. Vol. 11975. Lecture Notes in Computer Science. Springer, pp. 1-19.

References IV

Xing, Zhaohui, Wenying Zhang, and Guoyong Han (2020). "Improved Conditional Differential Analysis on NLFSR-Based Block Cipher KATAN32 with MILP". In: Wirel. Commun. Mob. Comput. 2020, 8883557:1-8883557:14.

Signal/Noise Ratio (Biham and Shamir 1993)

- When is the differential attack meaningful?

Signal/Noise Ratio (Biham and Shamir 1993)

- When is the differential attack meaningful?
- Signal/Noise ratio:

$$
S / N=\frac{2^{K} p}{w}, \quad \begin{aligned}
& p=\operatorname{Pr}\left[\Delta_{I N} \rightarrow \Delta_{\text {OUT }}\right](\text { main differential }) \\
& K=\text { guessed subkeys size } \\
& w=\text { avg \# subkey candidates } / \text { pair }
\end{aligned}
$$

- Faster than K-bit exhaustive search by a factor (S / N)

Signal/Noise Ratio (Biham and Shamir 1993)

- When is the differential attack meaningful?
- Signal/Noise ratio:

$$
S / N=\frac{2^{K} p}{w}, \quad \begin{aligned}
& p=\operatorname{Pr}\left[\Delta_{I N} \rightarrow \Delta_{O U T}\right] \text { (main differential) } \\
& K=\text { guessed subkeys size } \\
& w=\text { avg \# subkey candidates } / \text { pair }
\end{aligned}
$$

- Faster than K-bit exhaustive search by a factor (S / N)
- Consider observed difference Δ_{C} :

$$
w=2^{K} q, \text { where } q=\operatorname{Pr}\left[\Delta_{\text {OUT }} \rightarrow \Delta_{C}\right] \quad(\text { MiF trail })
$$

Signal/Noise Ratio (Biham and Shamir 1993)

- When is the differential attack meaningful?
- Signal/Noise ratio:

$$
S / N=\frac{2^{K} p}{w}, \quad \begin{aligned}
& p=\operatorname{Pr}\left[\Delta_{I N} \rightarrow \Delta_{\text {OUT }}\right] \text { (main differential) } \\
& K=\text { guessed subkeys size } \\
& w=\text { avg \# subkey candidates / pair }
\end{aligned}
$$

■ Faster than K-bit exhaustive search by a factor (S / N)

- Consider observed difference Δ_{C} :

$$
w=2^{K} q, \text { where } q=\operatorname{Pr}\left[\Delta_{O U T} \rightarrow \Delta_{C}\right] \quad(\text { MiF trail })
$$

- Conclude $S / N=\frac{p}{q}$

Signal/Noise Ratio (Biham and Shamir 1993)

- When is the differential attack meaningful?
- Signal/Noise ratio:

$$
S / N=\frac{2^{K} p}{w}, \quad \begin{aligned}
& p=\operatorname{Pr}\left[\Delta_{I N} \rightarrow \Delta_{\text {OUT }}\right] \text { (main differential) } \\
& K=\text { guessed subkeys size } \\
& w=\text { avg \# subkey candidates / pair }
\end{aligned}
$$

■ Faster than K-bit exhaustive search by a factor (S / N)

- Consider observed difference Δ_{C} :

$$
w=2^{K} q, \text { where } q=\operatorname{Pr}\left[\Delta_{O U T} \rightarrow \Delta_{C}\right](\text { MiF trail })
$$

- Conclude $S / N=\frac{p}{q} \quad$ INCORRECT

Gain

- define gain $g=\frac{\operatorname{Pr}[\text { a suggested key is the right one] }}{\operatorname{Pr}[\text { a random key is the right one] }}$

Gain

- define gain $g=\frac{\operatorname{Pr}[\text { a suggested key is the right one] }}{\operatorname{Pr}[\text { a random key is the right one] }}$

■ we show that $g=\frac{p}{\tilde{p}}=\frac{\operatorname{Pr}\left[\Delta_{I N} \rightarrow \Delta_{O U T}\right]}{\operatorname{Pr}\left[\Delta_{I N} \rightarrow \Delta_{C}\right]}=S / N \cdot \frac{q}{\tilde{p}}$

Gain

- define gain $g=\frac{\operatorname{Pr}[\text { a suggested key is the right one] }}{\operatorname{Pr}[\text { a random key is the right one] }}$

■ we show that $g=\frac{p}{\tilde{p}}=\frac{\operatorname{Pr}\left[\Delta_{I N} \rightarrow \Delta_{O U T}\right]}{\operatorname{Pr}\left[\Delta_{I N} \rightarrow \Delta_{C}\right]}=S / N \cdot \frac{q}{\tilde{p}}$

Gain

- define gain $g=\frac{\operatorname{Pr}[\text { a suggested key is the right one }]}{\operatorname{Pr}[\text { a random key is the right one] }}$
- we show that $g=\frac{p}{\tilde{p}}=\frac{\operatorname{Pr}\left[\Delta_{I N} \rightarrow \Delta_{O U T}\right]}{\operatorname{Pr}\left[\Delta_{I N} \rightarrow \Delta_{C}\right]}=S / N \cdot \frac{q}{\tilde{p}}$
- ciphertext-randomization hypothesis:

$$
\tilde{p}=2^{-|C|} \Rightarrow g=2^{|C|} p
$$

Gain

- define gain $g=\frac{\operatorname{Pr}[\text { a suggested key is the right one }]}{\operatorname{Pr}[\text { a random key is the right one] }}$
- we show that $g=\frac{p}{\tilde{p}}=\frac{\operatorname{Pr}\left[\Delta_{I N} \rightarrow \Delta_{\text {OUT }}\right]}{\operatorname{Pr}\left[\Delta_{\text {IN }} \rightarrow \Delta_{C}\right]}=S / N \cdot \frac{q}{\tilde{p}}$
- ciphertext-randomization hypothesis:

$$
\tilde{p}=2^{-|C|} \Rightarrow g=2^{|C|} p
$$

- (general limit of differential key recovery)

