Advancing the Meet-in-the-Filter Technique: Applications to CHAM and KATAN

Alex Biryukov¹, Je Sen Teh^{1,2}, <u>Aleksei Udovenko¹</u>

¹ SnT, University of Luxembourg ² University Sains Malaysia

Selected Areas in Cryptography 2022 25th August 2022

Luxembourg National Research Fund

Overview

Meet-in-the-Filter (MiF)

- Recently proposed framework for differential cryptanalysis (Biryukov, Santos, Teh, Udovenko, and Velichkov 2022)
- Combines (variations of) techniques from the literature:
 - 1 differential meet-in-the-middle, e.g. (Rechberger, Soleimany, and Tiessen 2018)
 - 2 trail-assisted bit-based key-recovery, e.g. (Dinur 2014)
 - 3 dynamic counting to trade data for time reduction
- Applied to Speck, automated but tedious complexity analysis

Overview

Meet-in-the-Filter (MiF)

- Recently proposed framework for differential cryptanalysis (Biryukov, Santos, Teh, Udovenko, and Velichkov 2022)
- Combines (variations of) techniques from the literature:
 - 1 differential meet-in-the-middle, e.g. (Rechberger, Soleimany, and Tiessen 2018)
 - 2 trail-assisted bit-based key-recovery, e.g. (Dinur 2014)
 - 3 dynamic counting to trade data for time reduction
- Applied to Speck, automated but tedious complexity analysis

This work:

- 1 Theoretical aspects and understanding of MiF
- 2 Simplified analysis methods (pen-and-paper)
- 3 Based on trail counting
- 4 Applications: CHAM-64 and KATAN-32/48/64

1 Meet-in-the-Filter Technique

2 Theory

- **3** Application to CHAM
- 4 Application to KATAN

5 Conclusions

Differential Cryptanalysis

Differential Cryptanalysis

Differential Cryptanalysis

1 how to find key candidates efficiently?

2 when is such attack worth it?

Meet-in-the-Filter

- **1** precompute the cluster of *trails* $\Delta_{OUT} \rightarrow \Delta_X$
- **2** for each *observed* Δ_C :
 - **1** compute the filter-set of trails $\Delta_Y \rightarrow \Delta_C$
 - 2 intersect to get trails $\Delta_{OUT} \rightarrow (\Delta_X = \Delta_Y) \rightarrow \Delta_C$
 - 3 run trail-assisted key recovery

1 Meet-in-the-Filter Technique

2 Theory

- **3** Application to CHAM
- 4 Application to KATAN

5 Conclusions

Trail Count vs Average Trail Probability

Theorem

Let T be the set of **all** k-round trails starting at Δ . Then, the average probability of a trail in T is equal to 1/|T|.

stage 5 / 16

5/16

5/16

5/16

Computing/Estimating Round Filter Strength

3 rounds *t*₃ trails

Computing/Estimating Round Filter Strength

Computing/Estimating Round Filter Strength

Trail-based Plaintext Structures

■ Compute all possible backwards trails Δ_{IN} → Δ_P
 ■ As long as all Δ_Pⁱ fit a structure, e.g.

$$\Delta_{P}{}^{i} \preceq 00 * * * * * 0 *$$

Trail-based Plaintext Structures

- Compute all possible backwards trails $\Delta_{IN} \rightarrow \Delta_P$
- As long as all Δ_P^i fit a structure, e.g.

$$\Delta_{P}{}^{i} \preceq 00 * * * * * 0 *$$

"Free" rounds if can combine the top/bottom filters:
 1/q trails of prob. q

1 Meet-in-the-Filter Technique

2 Theory

3 Application to CHAM

4 Application to KATAN

5 Conclusions

CHAM cipher

- Based on the ARX construction
 - **1** CHAM-64/128 88 rounds
 - 2 CHAM-128/128 112 rounds
 - 3 CHAM-128/256 120 rounds
- Key schedule updates subkey words linearly and independently
- No trail clustering over 4 rounds
 - 4-round trail fully determined from its input & output differences

Table: Summary of differential attacks on CHAM-64 (single-key setting).

Туре	Rounds	Time	Data	Memory	Ref
Single Trail Distinguisher Diff. Distinguisher	39 44	-	-	-	(Huang and Wang 2019) (Roh, Koo, Jung, Jeong, Lee, Kwon, and Kim
Diff. Key-recovery	52	2114	2 ⁶¹	2 ⁵⁴	This Paper

- No prior key recovery attacks
 - **1** Previous work focused on finding differential trails

High-level Attack description

Round split:

- 1 4 rounds: plaintext structure, enumerated trails
- **2** 40 rounds: differential trail ($Pr = 2^{-60.05}$)
- **3** 8 rounds: meet-in-the-filter (4 cluster + 4 filter)

High-level Attack description

Round split:

- **1** 4 rounds: plaintext structure, enumerated trails
- **2** 40 rounds: differential trail ($Pr = 2^{-60.05}$)
- **3** 8 rounds: meet-in-the-filter (4 cluster + 4 filter)

Attack procedure:

- 1 Encrypt plaintext structures
- 2 Enumerate pt/ct pairs and pt-side trails
- 3 Obtain ct-side trails using MiF
- Guess-and-determine procedure for two-sided MiF key recovery (exploit relations between subkeys from both sides)

Table:	Backward	extension	from	difference
$\Delta_{IN} =$	(0020,00	10, 1020, 2	2800)	

Round	#Trails	Avg.wt/R
-4	2 ^{35.67}	11.87
-3	$2^{23.8}$	11.91
-2	$2^{11.89}$	7.72
-1	$2^{4.17}$	4.17

Table:	Forward extension from difference	
Δ_{OUT}	= (2000, 1000, 2810, 0020).	

Round	#Trails	Avg.wt/R
+1	2 ^{1.58}	1.58
+2	$2^{8.12}$	6.54
+3	$2^{15.46}$	7.34
+4	$2^{19.55}$	4.09
+5	2 ^{29.89}	10.34
+6	2 ^{39.95}	10.06
+7	2 ^{52.57}	12.62
+8	2 ^{64.84}	12.27

Master key word	Round	Filter	Round	Filter	Total	■ Time: 2 ^{0.00}
						Trail-keys:
K[0]	1	$2^{-11.87}$	49	$2^{-10.34}$	$2^{-22.21}$	$2^{60.05+35.67+64.84-64} =$
K[1]	2	$2^{-11.91}$	50	$2^{-10.06}$	$2^{-21.97}$	2 ^{96.56}
K[2]	3	$2^{-7.72}$	51	$2^{-12.62}$	$2^{-20.34}$	
K[3]	4	$2^{-4.17}$	52	$2^{-12.27}$	$2^{-16.44}$	
K[4]	5	$2^{-1.00}$	46	$2^{-6.54}$	$2^{-7.54}$	
K[5]	6	$2^{-2.00}$	45	$2^{-1.58}$	$2^{-3.58}$	
K[6]	7	$2^{-3.00}$	48	$2^{-4.09}$	$2^{-7.09}$	
K[7]	8	$2^{-2.00}$	47	$2^{-7.34}$	2 ^{-9.34}	
all	1-8	$2^{-43.68}$	43-50	2 ^{-64.84}	2-108.52	

Master key word	Round	Filter	Round	Filter	Total	• Time: + $2^{100.29} \rightarrow 2^{100.29}$
K[0] K[1] K[2] K[3] K[4] K[5] K[6] K[7]	1 2 3 4 5 6 7 8	$2^{-11.87}$ $2^{-11.91}$ $2^{-7.72}$ $2^{-4.17}$ $2^{-1.00}$ $2^{-2.00}$ $2^{-3.00}$ $2^{-2.00}$	49 50 51 52 46 45 48 47	$2^{-10.34}$ $2^{-10.06}$ $2^{-12.62}$ $2^{-12.27}$ $2^{-6.54}$ $2^{-1.58}$ $2^{-4.09}$ $2^{-7.34}$	$\begin{vmatrix} 2^{-22.21} \\ 2^{-21.97} \\ 2^{-20.34} \\ 2^{-16.44} \\ 2^{-7.54} \\ 2^{-3.58} \\ 2^{-7.09} \\ 2^{-9.34} \end{vmatrix}$	Trail-keys: $\times 2^{3.73} \rightarrow 2^{100.29}$
all	1-8	2 ^{-43.68}	43-50	2 ^{-64.84}	2 ^{-108.52}	

Master key word	Round	Filter	Round	Filter	Total	■ Time: + $2^{103.67} \rightarrow 2^{103.80}$
K[0] K[1] K[2] K[3] K[4] K[5] K[6] K[7]	1 2 3 4 5 6 7 8	$2^{-11.87} \\ 2^{-11.91} \\ 2^{-7.72} \\ 2^{-4.17} \\ 2^{-1.00} \\ 2^{-2.00} \\ 2^{-3.00} \\ 2^{-2.00}$	49 50 51 52 46 45 48 47	$2^{-10.34}$ $2^{-10.06}$ $2^{-12.62}$ $2^{-12.27}$ $2^{-6.54}$ $2^{-1.58}$ $2^{-4.09}$ $2^{-7.34}$	$\begin{vmatrix} 2^{-22.21} \\ 2^{-21.97} \\ 2^{-20.34} \\ 2^{-16.44} \\ 2^{-7.54} \\ 2^{-3.58} \\ 2^{-7.09} \\ 2^{-9.34} \end{vmatrix}$	Trail-keys: $\times 2^{3.38} \rightarrow 2^{103.67}$
all	1-8	2 ^{-43.68}	43-50	2 ^{-64.84}	$ 2^{-108.52}$	

Master	Round	Filter	Round	Filter	Total	■ Time:
key word						$+2^{103.67} \rightarrow 2^{104.74}$
K[0]	1	$2^{-11.87}$	49	$2^{-10.34}$	2 ^{-22.21}	Trail-keys: $\times 2^{-7.72} \rightarrow 2^{95.95}$
K[1]	2	$2^{-11.91}$	50	$2^{-10.06}$	$2^{-21.97}$	$\times 2^{-1.12} \rightarrow 2^{93.93}$
K[2]	3	$2^{-7.72}$	51	$2^{-12.62}$	$2^{-20.34}$	
K[3]	4	$2^{-4.17}$	52	$2^{-12.27}$	$2^{-16.44}$	
K[4]	5	$2^{-1.00}$	46	$2^{-6.54}$	$2^{-7.54}$	
K[5]	6	$2^{-2.00}$	45	$2^{-1.58}$	$2^{-3.58}$	
K[6]	7	$2^{-3.00}$	48	$2^{-4.09}$	$2^{-7.09}$	
K[7]	8	$2^{-2.00}$	47	$2^{-7.34}$	2 ^{-9.34}	
all	1-8	$2^{-43.68}$	43-50	2 ^{-64.84}	2-108.52	

Master key word	Round	Filter	Round	Filter	Total	• Time: + $2^{100.04} \rightarrow 2^{104.79}$
			<u> </u>		<u> </u>	1 = 7 =
K[0]	1	$2^{-11.87}$	49	$2^{-10.34}$	$2^{-22.21}$	■ Trail-keys:
K[1]	2	$2^{-11.91}$	50	$2^{-10.06}$	$2^{-21.97}$	$ imes 2^{4.09} ightarrow 2^{100.04}$
K[2]	3	$2^{-7.72}$	51	$2^{-12.62}$	2 ^{-20.34}	
K[3]	4	$2^{-4.17}$	52	$2^{-12.27}$	$2^{-16.44}$	
K[4]	5	$2^{-1.00}$	46	$2^{-6.54}$	$2^{-7.54}$	
K[5]	6	$2^{-2.00}$	45	$2^{-1.58}$	$2^{-3.58}$	
K[6]	7	$2^{-3.00}$	48	$2^{-4.09}$	$2^{-7.09}$	
K[7]	8	$2^{-2.00}$	47	$2^{-7.34}$	2 ^{-9.34}	
all	1-8	$2^{-43.68}$	43-50	2 ^{-64.84}	2-108.52	

Master key word	Round	Filter	Round	Filter	Total	• Time: + $2^{100.04} \rightarrow 2^{104.84}$
K[0] K[1] K[2] K[3] K[4] K[5] K[6] K[7]	1 2 3 4 5 6 7 8	$2^{-11.87}$ $2^{-11.91}$ $2^{-7.72}$ $2^{-4.17}$ $2^{-1.00}$ $2^{-2.00}$ $2^{-3.00}$ $2^{-2.00}$	49 50 51 52 46 45 48 47	$2^{-10.34}$ $2^{-10.06}$ $2^{-12.62}$ $2^{-12.27}$ $2^{-6.54}$ $2^{-1.58}$ $2^{-4.09}$ $2^{-7.34}$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	• Trail-keys: $\times 2^{-10.06} \rightarrow 2^{89.98}$
all	1-8	2 ^{-43.68}	43-50	2 ^{-64.84}	2-108.52	

Master key word	Round	Filter	Round	Filter	Total	■ Time: +2 ^{94.11} → 2 ^{104.85}
K[0] K[1] K[2] K[3] K[4] K[5] K[6] K[7]	1 2 3 4 5 6 7 8	$2^{-11.87}$ $2^{-11.91}$ $2^{-7.72}$ $2^{-4.17}$ $2^{-1.00}$ $2^{-2.00}$ $2^{-3.00}$ $2^{-2.00}$	49 50 51 52 46 45 48 47	$2^{-10.34}$ $2^{-10.06}$ $2^{-12.62}$ $2^{-12.27}$ $2^{-6.54}$ $2^{-1.58}$ $2^{-4.09}$ $2^{-7.34}$	$\begin{vmatrix} 2^{-22.21} \\ 2^{-21.97} \\ 2^{-20.34} \\ 2^{-16.44} \\ 2^{-7.54} \\ 2^{-3.58} \\ 2^{-7.09} \\ 2^{-9.34} \end{vmatrix}$	• Trail-keys: $\times 2^{4.13} \rightarrow 2^{94.11}$
all	1-8	2 ^{-43.68}	43-50	$2^{-64.84}$	2-108.52	

Master key word	Round	Filter	Round	Filter	Total	■ Time: +2 ^{94.11} → 2 ^{104.85}
K[0] K[1] K[2] K[3] K[4] K[5] K[6] K[7]	1 2 3 4 5 6 7 8	$2^{-11.87}$ $2^{-11.91}$ $2^{-7.72}$ $2^{-4.17}$ $2^{-1.00}$ $2^{-2.00}$ $2^{-3.00}$ $2^{-2.00}$	49 50 51 52 46 45 48 47	$2^{-10.34}$ $2^{-10.06}$ $2^{-12.62}$ $2^{-12.27}$ $2^{-6.54}$ $2^{-1.58}$ $2^{-4.09}$ $2^{-7.34}$	$\begin{vmatrix} 2^{-22.21} \\ 2^{-21.97} \\ 2^{-20.34} \\ 2^{-16.44} \\ 2^{-7.54} \\ 2^{-3.58} \\ 2^{-7.09} \\ 2^{-9.34} \end{vmatrix}$	Trail-keys: $\times 2^{-10.34} \rightarrow 2^{83.77}$
all	1-8	$2^{-43.68}$	43-50	$2^{-64.84}$	2-108.52	

Master key word	Round	Filter	Round	Filter	Total	■ Time: + $2^{83.77} \rightarrow 2^{104.85}$
K[0] K[1] K[2] K[3] K[4] K[5] K[6] K[7]	1 2 3 4 5 6 7 8	$2^{-11.87}$ $2^{-11.91}$ $2^{-7.72}$ $2^{-4.17}$ $2^{-1.00}$ $2^{-2.00}$ $2^{-3.00}$ $2^{-2.00}$	49 50 51 52 46 45 48 47	$2^{-10.34}$ $2^{-10.06}$ $2^{-12.62}$ $2^{-12.27}$ $2^{-6.54}$ $2^{-1.58}$ $2^{-4.09}$ $2^{-7.34}$	$\begin{vmatrix} 2^{-22.21} \\ 2^{-21.97} \\ 2^{-20.34} \\ 2^{-16.44} \\ 2^{-7.54} \\ 2^{-3.58} \\ 2^{-7.09} \\ 2^{-9.34} \end{vmatrix}$	Trail-keys: × $2^{-4.17} \rightarrow 2^{79.60}$
all	1-8	2 ^{-43.68}	43-50	2 ^{-64.84}	2-108.52	

Master key word	Round	Filter	Round	Filter	Total	■ Time: +2 ^{91.51} → 2 ^{104.85}
K[0] K[1] K[2] K[3] K[4] K[5] K[6] K[7]	1 2 3 4 5 6 7 8	$2^{-11.87}$ $2^{-11.91}$ $2^{-7.72}$ $2^{-4.17}$ $2^{-1.00}$ $2^{-2.00}$ $2^{-3.00}$ $2^{-2.00}$	49 50 51 52 46 45 48 47	$2^{-10.34}$ $2^{-10.06}$ $2^{-12.62}$ $2^{-12.27}$ $2^{-6.54}$ $2^{-1.58}$ $2^{-4.09}$ $2^{-7.34}$	$\begin{vmatrix} 2^{-22.21} \\ 2^{-21.97} \\ 2^{-20.34} \\ 2^{-16.44} \\ 2^{-7.54} \\ 2^{-3.58} \\ 2^{-7.09} \\ 2^{-9.34} \end{vmatrix}$	• Trail-keys: $\times 2^{11.91} \rightarrow 2^{91.51}$
all	1-8	$2^{-43.68}$	43-50	$2^{-64.84}$	2-108.52	

Master key word	Round	Filter	Round	Filter	Total	■ Time: + $2^{91.51} \rightarrow 2^{104.85}$
K[0] K[1] K[2] K[3] K[4] K[5] K[6] K[7]	1 2 3 4 5 6 7 8	$2^{-11.87}$ $2^{-11.91}$ $2^{-7.72}$ $2^{-4.17}$ $2^{-1.00}$ $2^{-2.00}$ $2^{-3.00}$ $2^{-2.00}$	49 50 51 52 46 45 48 47	$2^{-10.34}$ $2^{-10.06}$ $2^{-12.62}$ $2^{-12.27}$ $2^{-6.54}$ $2^{-1.58}$ $2^{-4.09}$ $2^{-7.34}$	$\begin{vmatrix} 2^{-22.21} \\ 2^{-21.97} \\ 2^{-20.34} \\ 2^{-16.44} \\ 2^{-7.54} \\ 2^{-3.58} \\ 2^{-7.09} \\ 2^{-9.34} \end{vmatrix}$	Trail-keys: $\times 2^{-3.00} \rightarrow 2^{88.51}$
all	1-8	2 ^{-43.68}	43-50	2 ^{-64.84}	2-108.52	

Master key word	Round	Filter	Round	Filter	Total	■ Time: +2 ^{97.17} → 2 ^{104.85}
K[0] K[1] K[2] K[3] K[4] K[5] K[6] K[7]	1 2 3 4 5 6 7 8	$2^{-11.87}$ $2^{-11.91}$ $2^{-7.72}$ $2^{-4.17}$ $2^{-1.00}$ $2^{-2.00}$ $2^{-3.00}$ $2^{-2.00}$	49 50 51 52 46 45 48 47	$2^{-10.34}$ $2^{-10.06}$ $2^{-12.62}$ $2^{-12.27}$ $2^{-6.54}$ $2^{-1.58}$ $2^{-4.09}$ $2^{-7.34}$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Trail-keys: $\times 2^{8.66} \rightarrow 2^{97.17}$
all	1-8	2 ^{-43.68}	43-50	2 ^{-64.84}	2-108.52	

Master key word	Round	Filter	Round	Filter	Total	• Time: + $2^{106.63} \rightarrow 2^{107.00}$
K[0] K[1] K[2] K[3] K[4] K[5] K[6] K[7]	1 2 3 4 5 6 7 8	$2^{-11.87}$ $2^{-11.91}$ $2^{-7.72}$ $2^{-4.17}$ $2^{-1.00}$ $2^{-2.00}$ $2^{-3.00}$ $2^{-2.00}$	49 50 51 52 46 45 48 47	$2^{-10.34}$ $2^{-10.06}$ $2^{-12.62}$ $2^{-12.27}$ $2^{-6.54}$ $2^{-1.58}$ $2^{-4.09}$ $2^{-7.34}$	$\begin{vmatrix} 2^{-22.21} \\ 2^{-21.97} \\ 2^{-20.34} \\ 2^{-16.44} \\ 2^{-7.54} \\ 2^{-3.58} \\ 2^{-7.09} \\ 2^{-9.34} \end{vmatrix}$	• Trail-keys: $\times 2^{9.46} \rightarrow 2^{106.63}$
all	1-8	2 ^{-43.68}	43-50	2 ^{-64.84}	2-108.52	

Master key word	Round	Filter	Round	Filter	Total	• Time: + $2^{106.63} \rightarrow 2^{107.83}$
K[0] K[1] K[2] K[3] K[4] K[5] K[6] K[7]	1 2 3 4 5 6 7 8	$2^{-11.87}$ $2^{-11.91}$ $2^{-7.72}$ $2^{-4.17}$ $2^{-1.00}$ $2^{-2.00}$ $2^{-3.00}$ $2^{-2.00}$	49 50 51 52 46 45 48 47	$2^{-10.34}$ $2^{-10.06}$ $2^{-12.62}$ $2^{-12.27}$ $2^{-6.54}$ $2^{-1.58}$ $2^{-4.09}$ $2^{-7.34}$	$\begin{vmatrix} 2^{-22.21} \\ 2^{-21.97} \\ 2^{-20.34} \\ 2^{-16.44} \\ 2^{-7.54} \\ 2^{-3.58} \\ 2^{-7.09} \\ 2^{-9.34} \end{vmatrix}$	• Trail-keys: $\times 2^{-1.00} \rightarrow 2^{105.63}$
all	1-8	2 ^{-43.68}	43-50	2 ^{-64.84}	2-108.52	

Master key word	Round	Filter	Round	Filter	Total	• Time: + $2^{105.63} \rightarrow 2^{108.11}$
K[0] K[1] K[2] K[3] K[4] K[5] K[6] K[7]	1 2 3 4 5 6 7 8	$2^{-11.87}$ $2^{-11.91}$ $2^{-7.72}$ $2^{-4.17}$ $2^{-1.00}$ $2^{-2.00}$ $2^{-3.00}$ $2^{-2.00}$	49 50 51 52 46 45 48 47	$2^{-10.34}$ $2^{-10.06}$ $2^{-12.62}$ $2^{-12.27}$ $2^{-6.54}$ $2^{-1.58}$ $2^{-4.09}$ $2^{-7.34}$	$\begin{vmatrix} 2^{-22.21} \\ 2^{-21.97} \\ 2^{-20.34} \\ 2^{-16.44} \\ 2^{-7.54} \\ 2^{-3.58} \\ 2^{-7.09} \\ 2^{-9.34} \end{vmatrix}$	• Trail-keys: $\times 2^{-2.00} \rightarrow 2^{103.63}$
all	1-8	$2^{-43.68}$	43-50	2 ^{-64.84}	2-108.52	

Master key word	Round	Filter	Round	Filter	Total	• Time: + $2^{117.63} \rightarrow 2^{117.63}$
K[0] K[1] K[2] K[3] K[4] K[5] K[6] K[7]	1 2 3 4 5 6 7 8	$2^{-11.87}$ $2^{-11.91}$ $2^{-7.72}$ $2^{-4.17}$ $2^{-1.00}$ $2^{-2.00}$ $2^{-3.00}$ $2^{-2.00}$	 49 50 51 52 46 45 48 47 	$2^{-10.34}$ $2^{-10.06}$ $2^{-12.62}$ $2^{-12.27}$ $2^{-6.54}$ $2^{-1.58}$ $2^{-4.09}$ $2^{-7.34}$	$\begin{vmatrix} 2^{-22.21} \\ 2^{-21.97} \\ 2^{-20.34} \\ 2^{-16.44} \\ 2^{-7.54} \\ 2^{-3.58} \\ 2^{-7.09} \\ 2^{-9.34} \end{vmatrix}$	• Trail-keys: $\times 2^{14.00} \rightarrow 2^{117.63}$
all	1-8	$2^{-43.68}$	43-50	2 ^{-64.84}	2-108.52	

Master key word	Round	Filter	Round	Filter	Total	• Time: + $2^{117.63} \rightarrow 2^{118.63}$
K[0] K[1] K[2] K[3] K[4] K[5] K[6] K[7]	1 2 3 4 5 6 7 8	$2^{-11.87}$ $2^{-11.91}$ $2^{-7.72}$ $2^{-4.17}$ $2^{-1.00}$ $2^{-2.00}$ $2^{-3.00}$ $2^{-2.00}$	 49 50 51 52 46 45 48 47 	$2^{-10.34}$ $2^{-10.06}$ $2^{-12.62}$ $2^{-12.27}$ $2^{-6.54}$ $2^{-1.58}$ $2^{-4.09}$ $2^{-7.34}$	$\begin{vmatrix} 2^{-22.21} \\ 2^{-21.97} \\ 2^{-20.34} \\ 2^{-16.44} \\ 2^{-7.54} \\ 2^{-3.58} \\ 2^{-7.09} \\ 2^{-9.34} \end{vmatrix}$	• Trail-keys: $\times 2^{-1.58} \rightarrow 2^{116.05}$
all	1-8	$2^{-43.68}$	43-50	$2^{-64.84}$	2-108.52	

1 Meet-in-the-Filter Technique

2 Theory

- **3** Application to CHAM
- 4 Application to KATAN

5 Conclusions

KATAN cipher

- Based on nonlinear feedback shift registers (NLFSR): KATAN-32/48/64
 - 1 80-bit key
 - 2 254 rounds
 - **3** Variants differ in register sizes and location of *taps*
- Linear key schedule

Attacks Summary and Comparison

Cipher	Rounds	Туре	Time	Data	Ref
KATAN-32	117	SK Rectangle	2 ^{79.3}	2 ^{27.3}	(Chen, Teh, Liu, Su, Samsudin, and Xiang 20
	123	SK Diff.	2 ^{75.80}	2 ³¹	This Paper
	187	RK Rectangle	2 ^{78.4}	$2^{31.8}$	(Chen, Teh, Liu, Su, Samsudin, and Xiang 20
	206	SK Multi-dim. MitM	2 ⁷⁹	3	(Rasoolzadeh and Raddum 2016)
KATAN-48	87	SK Rectangle	2 ⁷⁸	2 ^{36.7}	(Chen, Teh, Liu, Su, Samsudin, and Xiang 20
	130	SK Diff.	2 ^{73.56}	245	This Paper
	150	RK Rectangle	277.6	2 ^{47.2}	(Chen, Teh, Liu, Su, Samsudin, and Xiang 20
	148	SK Multi-dim. MitM	2 ⁷⁹	2	(Rasoolzadeh and Raddum 2016)
KATAN-64	72	SK Rectangle	2 ⁷⁸	$2^{55.1}$	(Chen, Teh, Liu, Su, Samsudin, and Xiang 20
	109	SK Diff.	2 ^{73.65}	257	This Paper
	133	RK Rectangle	2 ^{78.5}	2 ^{58.4}	(Chen, Teh, Liu, Su, Samsudin, and Xiang 20
	129	SK Multi-dim. MitM	2 ⁷⁹	2	(Rasoolzadeh and Raddum 2016) 14/16

Attacks Summary

- $\blacksquare \approx$ direct MiF application
- no plaintext structure (but free rounds)
- using multiple output differences to reduce data

Attacks Summary

- $\blacksquare \approx direct \; MiF$ application
- no plaintext structure (but free rounds)
- using multiple output differences to reduce data

Version	Subkey bits /round	Steps /round	Avg.Prob. (random)	Total Factor /round
KATAN-32	2	1	$2^{-1.76}$	$\times 2^{+0.24}$
KATAN-48	2	2	$2^{-3.52}$	$\times 2^{-1.52}$
KATAN-64	2	3	$2^{-5.28}$	×2 ^{-3.28}

Attacks Summary

- $\blacksquare \approx direct \; MiF$ application
- no plaintext structure (but free rounds)
- using multiple output differences to reduce data

Version	Subkey bits /round	Steps /round	Avg.Prob. (random)	Total Factor /round
KATAN-32	2	1	$2^{-1.76}$	$\times 2^{+0.24}$
KATAN-48	2	2	$2^{-3.52}$	$\times 2^{-1.52}$
KATAN-64	2	3	$2^{-5.28}$	×2 ^{-3.28}

■ ⇒ better to directly guess "negative" rounds' subkeys and decrypt ciphertexts before running MiF (2 subkey bits / round) 1 Meet-in-the-Filter Technique

2 Theory

- **3** Application to CHAM
- 4 Application to KATAN

5 Conclusions

Conclusions

This work:

- simplified analysis of Meet-in-the-Filter (pen-and-paper)
- tools for analysis of trail distributions
- combining MiF with plaintext structures
- example applications: attacks on CHAM and KATAN

github.com/aa8a7b82/mif

ia.cr/2022/xxxx

Open problems:

- similar simplified theory for dynamic counting
- more applications

Pr = r

Pr = a

 Δm

Δουτ

References I

Albrecht, Martin R. and Gregor Leander (2012). "An All-In-One Approach to Differential Cryptanalysis for Small Block Ciphers". In: Selected Areas in Cryptography. Vol. 7707. Lecture Notes in Computer Science. Springer, pp. 1–15.
Biham, Eli and Adi Shamir (1993). Differential Cryptanalysis of the Data Encryption Standard. Berlin, Heidelberg: Springer-Verlag. ISBN: 0387979301.
Biryukov, Alex, Luan Cardoso dos Santos, Je Sen Teh, Aleksei Udovenko, and Vesselin Velichkov (2022). Meet-in-the-Filter and Dynamic Counting with Applications to Speck. Cryptology ePrint Archive, Paper 2022/673. https://eprint.iacr.org/2022/673.

Chen, Jiageng, Jesen Teh, Zhe Liu, Chunhua Su, Azman Samsudin, and Yang Xiang (2017). "Towards Accurate Statistical Analysis of Security Margins: New Searching Strategies for Differential Attacks". In: *IEEE Trans. Computers* 66.10, pp. 1763–1777.

References II

- Dinur, Itai (Aug. 2014). "Improved Differential Cryptanalysis of Round-Reduced Speck".
 In: SAC 2014. Ed. by Antoine Joux and Amr M. Youssef. Vol. 8781. LNCS. Springer, Heidelberg, pp. 147–164. DOI: 10.1007/978-3-319-13051-4_9.
- Huang, Mingjiang and Liming Wang (2019). "Automatic Tool for Searching for Differential Characteristics in ARX Ciphers and Applications". In: *INDOCRYPT 2019*. Vol. 11898. LNCS. Springer, pp. 115–138.
- Isobe, Takanori, Yu Sasaki, and Jiageng Chen (2013). "Related-Key Boomerang Attacks on KATAN32/48/64". In: ACISP. Vol. 7959. Lecture Notes in Computer Science. Springer, pp. 268–285.
- Knellwolf, Simon, Willi Meier, and María Naya-Plasencia (2010). "Conditional Differential Cryptanalysis of NLFSR-Based Cryptosystems". In: ASIACRYPT. Vol. 6477. Lecture Notes in Computer Science. Springer, pp. 130–145.

References III

Knellwolf, Simon, Willi Meier, and María Nava-Plasencia (2011). "Conditional Differential Cryptanalysis of Trivium and KATAN". In: Selected Areas in Cryptography. Vol. 7118. Lecture Notes in Computer Science. Springer, pp. 200-212. Rasoolzadeh, Shahram and Håvard Raddum (2016). "Multidimensional Meet in the Middle Cryptanalysis of KATAN". In: IACR Cryptol. ePrint Arch., p. 77. Rechberger, Christian, Hadi Soleimany, and Tyge Tiessen (2018). "Cryptanalysis of Low-Data Instances of Full LowMCv2". In: IACR Trans. Symm. Cryptol. 2018.3, pp. 163-181. ISSN: 2519-173X. DOI: 10.13154/tosc.v2018.i3.163-181. Roh, Dongyoung, Bonwook Koo, Younghoon Jung, Ilwoong Jeong, Donggeon Lee, Daesung Kwon, and Woo-Hwan Kim (2019). "Revised Version of Block Cipher CHAM". In: ICISC. Vol. 11975. Lecture Notes in Computer Science. Springer. pp. 1–19.

Xing, Zhaohui, Wenying Zhang, and Guoyong Han (2020). "Improved Conditional Differential Analysis on NLFSR-Based Block Cipher KATAN32 with MILP". In: *Wirel. Commun. Mob. Comput.* 2020, 8883557:1–8883557:14.

When is the differential attack meaningful?

- When is the differential attack meaningful?
- Signal/Noise ratio:

$$S/N = \frac{2^{K}p}{w}, \qquad \begin{array}{l} p = \Pr[\Delta_{IN} \to \Delta_{OUT}] \text{ (main differential)} \\ K = \text{guessed subkeys size} \\ w = \text{avg } \# \text{ subkey candidates / pair} \end{array}$$

• Faster than K-bit exhaustive search by a factor (S/N)

 Δ_{OUT} subkey Κ Δc 16/16

Pr = p

 Δ_{IN}

- When is the differential attack meaningful?
- Signal/Noise ratio:

$$S/N = \frac{2^{K}p}{w}, \qquad \begin{array}{l} p = \Pr[\Delta_{IN} \to \Delta_{OUT}] \text{ (main differential)} \\ K = \text{guessed subkeys size} \\ w = \text{avg } \# \text{ subkey candidates / pair} \end{array}$$

- Faster than K-bit exhaustive search by a factor (S/N)
- Consider observed difference Δ_C :

$$w = 2^{K}q$$
, where $q = \Pr[\Delta_{OUT} \rightarrow \Delta_{C}]$ (MiF trail)

 Δ_{OUT} Pr = q K subkey bits Δ_C

 Δ_{IN}

Pr = p

S/

- When is the differential attack meaningful?
- Signal/Noise ratio:

$$N = \frac{2^{K}p}{w}, \qquad p = \Pr[\Delta_{IN} \to \Delta_{OUT}] \text{ (main differential)} \\ K = \text{guessed subkeys size} \\ w = \text{avg } \# \text{ subkey candidates / pair}$$

• Faster than K-bit exhaustive search by a factor (S/N)

• Consider observed difference Δ_C :

$$w = 2^{K}q$$
, where $q = \Pr[\Delta_{OUT} \rightarrow \Delta_{C}]$ (MiF trail)

• Conclude $S/N = \frac{p}{q}$

 Δ_{IN}

 Δ_{OUT}

 Δc

Pr = p

S/

- When is the differential attack meaningful?
- Signal/Noise ratio:

$$N = \frac{2^{K}p}{w}, \qquad p = \Pr[\Delta_{IN} \to \Delta_{OUT}] \text{ (main differential)} \\ K = \text{guessed subkeys size} \\ w = \text{avg } \# \text{ subkey candidates / pair}$$

• Faster than K-bit exhaustive search by a factor (S/N)

• Consider observed difference Δ_C :

$$w = 2^{K}q$$
, where $q = \Pr[\Delta_{OUT} \rightarrow \Delta_{C}]$ (MiF trail)

• Conclude $S/N = \frac{p}{q}$ INCORRECT

$$r = q$$

 $\begin{cases} subkey \\ bits \end{cases}$
16 / 16

 Δ_{IN}

Δου

Pr = p

• we show that
$$g = \frac{p}{\tilde{p}} = \frac{\Pr[\Delta_{IN} \to \Delta_{OUT}]}{\Pr[\Delta_{IN} \to \Delta_{C}]} = S/N \cdot \frac{q}{\tilde{p}}$$

• we show that
$$g = \frac{p}{\tilde{p}} = \frac{\Pr[\Delta_{IN} \to \Delta_{OUT}]}{\Pr[\Delta_{IN} \to \Delta_{C}]} = S/N \cdot \frac{q}{\tilde{p}}$$

• we show that
$$g = rac{p}{ ilde{
ho}} = rac{\Pr[\Delta_{IN} o \Delta_{OUT}]}{\Pr[\Delta_{IN} o \Delta_{C}]} = S/N \cdot rac{q}{ ilde{
ho}}$$

$$\tilde{p} = 2^{-|C|} \quad \Rightarrow \quad g = 2^{|C|}p$$

$$\Pr = \tilde{p}$$

$$\Pr = r$$

$$\Pr = q$$

$$K$$
Subkey
$$\Delta_{C}$$

$$r = q$$

$$K$$
Subkey
$$\Delta_{C}$$

$$r = r$$

$$\Delta_{C}$$

$$r = r$$

$$r =$$

• we show that
$$g = rac{p}{ ilde{
ho}} = rac{\mathsf{Pr}[\Delta_{IN} o \Delta_{OUT}]}{\mathsf{Pr}[\Delta_{IN} o \Delta_{C}]} = S/N \cdot rac{q}{ ilde{
ho}}$$

$$\widetilde{\rho} = 2^{-|C|} \quad \Rightarrow \quad g = 2^{|C|} \rho$$

• (general limit of differential key recovery)

