
Revisiting Meet-in-the-Middle Cryptanalysis of SIDH/SIKE
with Application to the $IKEp182 Challenge

Aleksei Udovenko1,2, Giuseppe Vitto2

1CryptoExperts
2SnT, University of Luxembourg

Selected Areas in Cryptography 2022
25th August 2022

https://www.sac2022.ca/

High-level Overview

SIDH/SIKE are isogeny-based PQ protocols
Rely on hardness of finding isogenies between elliptic curves
(Previously) Best attacks: generic claw finding (meet-in-the-middle)
Physical memory constraints (size x speed)
⇒ low-memory van Oorschot-Wiener (vOW)

this work: revisiting and optimizing the MitM approach
Proof-of-concept: breaking $IKEp182 challenge (by Microsoft)
on a laptop on a weekend on an HPC cluster in a week
(9 core-years)

1 / 15

E E/〈A〉

E/〈B〉 E/〈A,B〉

φA

φB

φ′A

φ′B

High-level Overview

SIDH/SIKE are isogeny-based PQ protocols
Rely on hardness of finding isogenies between elliptic curves
(Previously) Best attacks: generic claw finding (meet-in-the-middle)
Physical memory constraints (size x speed)
⇒ low-memory van Oorschot-Wiener (vOW)

this work: revisiting and optimizing the MitM approach

Proof-of-concept: breaking $IKEp182 challenge (by Microsoft)
on a laptop on a weekend on an HPC cluster in a week
(9 core-years)

1 / 15

E E/〈A〉

E/〈B〉 E/〈A,B〉

φA

φB

φ′A

φ′B

High-level Overview

SIDH/SIKE are isogeny-based PQ protocols
Rely on hardness of finding isogenies between elliptic curves
(Previously) Best attacks: generic claw finding (meet-in-the-middle)
Physical memory constraints (size x speed)
⇒ low-memory van Oorschot-Wiener (vOW)

this work: revisiting and optimizing the MitM approach
Proof-of-concept: breaking $IKEp182 challenge (by Microsoft)
on a laptop on a weekend on an HPC cluster in a week
(9 core-years)

1 / 15

E E/〈A〉

E/〈B〉 E/〈A,B〉

φA

φB

φ′A

φ′B

Comparison to the Castryck-Decru Attack (Castryck and Decru 2022)

Outdated? Is MitM useless?😱

Castryck-Decru attack relies on the torsion point images
MitM is more generally applicable (existing + future schemes)
Generic attack in the generic setting may still be relevant for security analysis

2 / 15

Comparison to the Castryck-Decru Attack (Castryck and Decru 2022)

Outdated? Is MitM useless?😱
Castryck-Decru attack relies on the torsion point images
MitM is more generally applicable (existing + future schemes)
Generic attack in the generic setting may still be relevant for security analysis

2 / 15

Plan

1 Introduction

2 Meet-in-the-Middle Isogeny Search

3 Computing a SIKE-tree

4 Intersecting two SIKE-trees

5 Application to $IKEp182

6 Conclusion

2 / 15

SIDH/SIKE

Public parameters:
1 prime p with p + 1 = 2eA3eB

2 starting curve E with 2eA - and 3eB -torsion bases

Alice:
1 computes a secret 2eA isogeny ϕA : E → E/ ⟨A⟩
2 publishes EA with the 3eB -torsion image on it

Bob:
1 computes a secret 3eB isogeny ϕB : E → E/ ⟨B⟩
2 publishes EB with the 2eA -torsion image on it

Alice and Bob then reapply their secret isogenies on the published curves and
arrive at the same shared secret E/ ⟨A,B⟩

This work: recovering the 2eA-isogeny ϕA : E → E/ ⟨A⟩, given only E and EA = E/ ⟨A⟩

3 / 15

E E/〈A〉

E/〈B〉 E/〈A,B〉

φA

φB

φ′A

φ′B

Figure credits: TikZ for Cryptographers

https://www.iacr.org/authors/tikz/

SIDH/SIKE

Public parameters:
1 prime p with p + 1 = 2eA3eB

2 starting curve E with 2eA - and 3eB -torsion bases
Alice:

1 computes a secret 2eA isogeny ϕA : E → E/ ⟨A⟩
2 publishes EA with the 3eB -torsion image on it

Bob:
1 computes a secret 3eB isogeny ϕB : E → E/ ⟨B⟩
2 publishes EB with the 2eA -torsion image on it

Alice and Bob then reapply their secret isogenies on the published curves and
arrive at the same shared secret E/ ⟨A,B⟩

This work: recovering the 2eA-isogeny ϕA : E → E/ ⟨A⟩, given only E and EA = E/ ⟨A⟩

3 / 15

E E/〈A〉

E/〈B〉 E/〈A,B〉

φA

φB

φ′A

φ′B

Figure credits: TikZ for Cryptographers

https://www.iacr.org/authors/tikz/

SIDH/SIKE

Public parameters:
1 prime p with p + 1 = 2eA3eB

2 starting curve E with 2eA - and 3eB -torsion bases
Alice:

1 computes a secret 2eA isogeny ϕA : E → E/ ⟨A⟩
2 publishes EA with the 3eB -torsion image on it

Bob:
1 computes a secret 3eB isogeny ϕB : E → E/ ⟨B⟩
2 publishes EB with the 2eA -torsion image on it

Alice and Bob then reapply their secret isogenies on the published curves and
arrive at the same shared secret E/ ⟨A,B⟩

This work: recovering the 2eA-isogeny ϕA : E → E/ ⟨A⟩, given only E and EA = E/ ⟨A⟩

3 / 15

E E/〈A〉

E/〈B〉 E/〈A,B〉

φA

φB

φ′A

φ′B

Figure credits: TikZ for Cryptographers

https://www.iacr.org/authors/tikz/

SIDH/SIKE

Public parameters:
1 prime p with p + 1 = 2eA3eB

2 starting curve E with 2eA - and 3eB -torsion bases
Alice:

1 computes a secret 2eA isogeny ϕA : E → E/ ⟨A⟩
2 publishes EA with the 3eB -torsion image on it

Bob:
1 computes a secret 3eB isogeny ϕB : E → E/ ⟨B⟩
2 publishes EB with the 2eA -torsion image on it

Alice and Bob then reapply their secret isogenies on the published curves and
arrive at the same shared secret E/ ⟨A,B⟩

This work: recovering the 2eA-isogeny ϕA : E → E/ ⟨A⟩, given only E and EA = E/ ⟨A⟩

3 / 15

E E/〈A〉

E/〈B〉 E/〈A,B〉

φA

φB

φ′A

φ′B

Figure credits: TikZ for Cryptographers

https://www.iacr.org/authors/tikz/

SIDH/SIKE

Public parameters:
1 prime p with p + 1 = 2eA3eB

2 starting curve E with 2eA - and 3eB -torsion bases
Alice:

1 computes a secret 2eA isogeny ϕA : E → E/ ⟨A⟩
2 publishes EA with the 3eB -torsion image on it

Bob:
1 computes a secret 3eB isogeny ϕB : E → E/ ⟨B⟩
2 publishes EB with the 2eA -torsion image on it

Alice and Bob then reapply their secret isogenies on the published curves and
arrive at the same shared secret E/ ⟨A,B⟩

This work: recovering the 2eA-isogeny ϕA : E → E/ ⟨A⟩, given only E and EA = E/ ⟨A⟩
3 / 15

E E/〈A〉

E/〈B〉 E/〈A,B〉

φA

φB

φ′A

φ′B

SIDH/SIKE Arithmetic

Montgomery curves: EA : y2 = x3 + Ax2 + x defined over Fp2

Efficient x-only arithmetic

A 2eA-isogeny decomposes into eA 2-isogenies ϕi : EAi−1 → EAi :

ϕAlice = ϕeA ◦ . . . ◦ ϕ1

2-isogeny ϕi : EAi−1 → EAi :
requires the x-coordinate k of an order-2 point on E (the kernel gen.), x ̸= 0

evaluate: ϕi(x) = x(kx−1)
x−k

next curve: Ai = 2− 4k2

The 2-kernels can be derived from the 2eA-kernel of ϕAlice by pushing through ϕi
and raising to appropriate power [2eA−1−i]

4 / 15

SIDH/SIKE Arithmetic

Montgomery curves: EA : y2 = x3 + Ax2 + x defined over Fp2

Efficient x-only arithmetic
A 2eA-isogeny decomposes into eA 2-isogenies ϕi : EAi−1 → EAi :

ϕAlice = ϕeA ◦ . . . ◦ ϕ1

2-isogeny ϕi : EAi−1 → EAi :
requires the x-coordinate k of an order-2 point on E (the kernel gen.), x ̸= 0

evaluate: ϕi(x) = x(kx−1)
x−k

next curve: Ai = 2− 4k2

The 2-kernels can be derived from the 2eA-kernel of ϕAlice by pushing through ϕi
and raising to appropriate power [2eA−1−i]

4 / 15

SIDH/SIKE Arithmetic

Montgomery curves: EA : y2 = x3 + Ax2 + x defined over Fp2

Efficient x-only arithmetic
A 2eA-isogeny decomposes into eA 2-isogenies ϕi : EAi−1 → EAi :

ϕAlice = ϕeA ◦ . . . ◦ ϕ1

2-isogeny ϕi : EAi−1 → EAi :
requires the x-coordinate k of an order-2 point on E (the kernel gen.), x ̸= 0

evaluate: ϕi(x) = x(kx−1)
x−k

next curve: Ai = 2− 4k2

The 2-kernels can be derived from the 2eA-kernel of ϕAlice by pushing through ϕi
and raising to appropriate power [2eA−1−i]

4 / 15

SIDH/SIKE Arithmetic

Montgomery curves: EA : y2 = x3 + Ax2 + x defined over Fp2

Efficient x-only arithmetic
A 2eA-isogeny decomposes into eA 2-isogenies ϕi : EAi−1 → EAi :

ϕAlice = ϕeA ◦ . . . ◦ ϕ1

2-isogeny ϕi : EAi−1 → EAi :
requires the x-coordinate k of an order-2 point on E (the kernel gen.), x ̸= 0

evaluate: ϕi(x) = x(kx−1)
x−k

next curve: Ai = 2− 4k2

The 2-kernels can be derived from the 2eA-kernel of ϕAlice by pushing through ϕi
and raising to appropriate power [2eA−1−i]

4 / 15

Plan

1 Introduction

2 Meet-in-the-Middle Isogeny Search

3 Computing a SIKE-tree

4 Intersecting two SIKE-trees

5 Application to $IKEp182

6 Conclusion

4 / 15

High-level MitM (Galbraith 1999; Adj et al. 2019)

5 / 15

SIKE: Left Tree

Goal:

LeftTree =
{

j(EA/⟨P + [s]Q⟩) | s ∈ [0, 2eA/2]
} EA

· · ·
1

0
1

· · ·0
1

· · ·1

· · ·0

01

· · ·1

· · ·
1

0
1

· · ·1

· · ·
1

0

0

0

0
k=0
×

6 / 15

SIKE: Right Tree

Optimized arithmetic formulas leak 2 last steps
(Costello et al. 2020)

We express the right tree in the same shape as
the left tree
Let

C′ = 2
C − 6

C + 2

Goal:

RightTree =
{

j(EC′/⟨P′ + [s]Q′⟩) | s ∈ [0, 2eA/2]
}

EC′

· · ·
0

1
0

· · · 1
0

· · · 0

· · · 1

1 0

· · · 0

· · · 1
0

· · ·

· · ·
0

1
1

1

1

EC

jeAjeA−2

7 / 15

Plan

1 Introduction

2 Meet-in-the-Middle Isogeny Search

3 Computing a SIKE-tree

4 Intersecting two SIKE-trees

5 Application to $IKEp182

6 Conclusion

7 / 15

Recursive Generation (MitM-DFS (Adj et al. 2019))

Goal:

Tree =
{

j(E/⟨P + [s]Q⟩) | s ∈ [0, 2eA/2]
}

DFS visit tree (recursively)
need 2-kernel points
maintain 2eA−i-torsion, by pushing it through
isogenies and updating accordingly

We adapt the idea to SIKE’s optimized
arithmetic (e.g., ensure x ̸= 0)
We adapt optimal strategy for trade-off
between doublings and isogeny evaluations

EA

· · ·
1

0
1

· · ·0
1

· · ·1

· · ·0

01

· · ·1

· · ·
1

0
1

· · ·1

· · ·
1

0

0

0

0
k=0
×

8 / 15

Optimal Strategy for Doubling-Isogeny Trade-off

9 / 15

Optimal Strategy for Doubling-Isogeny Trade-off

9 / 15

Optimal Strategy for Doubling-Isogeny Trade-off

9 / 15

Optimal Strategy for Doubling-Isogeny Trade-off

×2
×2

×2

×2

×2

9 / 15

Optimal Strategy for Doubling-Isogeny Trade-off

×2
×4

×8

9 / 15

Optimal Strategy for Doubling-Isogeny Trade-off

×1
×(2+4+8+…)

=2^(i+1)-1

Subtree

cost: ×2^i

×1

9 / 15

Plan

1 Introduction

2 Meet-in-the-Middle Isogeny Search

3 Computing a SIKE-tree

4 Intersecting two SIKE-trees

5 Application to $IKEp182

6 Conclusion

9 / 15

Sort-and-Merge

Standard MitM: hash-table (left tree), lookups (right tree)
O(N) insertions/lookups
“Optimal” if O(1) random memory access
Physically impossible on large scale

Sort-and-Merge
O(N log N) comparisons/swaps
Mostly sequential/local access possible
The constant behind log N is small in practice (e.g. radix sort)
(Adj et al. 2019) considered 2D-mesh sorting as physically optimal. However, it is not
clear at which scale the physical limits start to apply.
Although we use only 245 storage, the limit of that paper set to 280 seems not that
far to actually reach physical limitations.

10 / 15

Sort-and-Merge

Standard MitM: hash-table (left tree), lookups (right tree)
O(N) insertions/lookups
“Optimal” if O(1) random memory access
Physically impossible on large scale

Sort-and-Merge
O(N log N) comparisons/swaps
Mostly sequential/local access possible
The constant behind log N is small in practice (e.g. radix sort)

(Adj et al. 2019) considered 2D-mesh sorting as physically optimal. However, it is not
clear at which scale the physical limits start to apply.
Although we use only 245 storage, the limit of that paper set to 280 seems not that
far to actually reach physical limitations.

10 / 15

Sort-and-Merge

Standard MitM: hash-table (left tree), lookups (right tree)
O(N) insertions/lookups
“Optimal” if O(1) random memory access
Physically impossible on large scale

Sort-and-Merge
O(N log N) comparisons/swaps
Mostly sequential/local access possible
The constant behind log N is small in practice (e.g. radix sort)
(Adj et al. 2019) considered 2D-mesh sorting as physically optimal. However, it is not
clear at which scale the physical limits start to apply.
Although we use only 245 storage, the limit of that paper set to 280 seems not that
far to actually reach physical limitations.

10 / 15

Extreme Storage Minimization

1 Drop path information
2 Truncate j-invariants

Example: two 244-sized trees, truncated to 64 bits
⇒ ≈ 244·2−64 = 224 collisions (false positives)

Stage 1: Find intersection between truncated j-invariants (truncated collisions)
Stage 2: Regenerate trees and check full j-invariants matching truncated collisions

3 Sorted & dense sets can be compressed by storing successive differences
Example: 244 elements of 64 bits have average difference 220 (64 → 20 bits
compression)

In $IKEp182, at least ×5− 6 compression rate (vs 44-bit path + 64-bit j-invariant part)

11 / 15

Extreme Storage Minimization

1 Drop path information
2 Truncate j-invariants

Example: two 244-sized trees, truncated to 64 bits
⇒ ≈ 244·2−64 = 224 collisions (false positives)

Stage 1: Find intersection between truncated j-invariants (truncated collisions)
Stage 2: Regenerate trees and check full j-invariants matching truncated collisions

3 Sorted & dense sets can be compressed by storing successive differences
Example: 244 elements of 64 bits have average difference 220 (64 → 20 bits
compression)

In $IKEp182, at least ×5− 6 compression rate (vs 44-bit path + 64-bit j-invariant part)

11 / 15

Extreme Storage Minimization

1 Drop path information
2 Truncate j-invariants

Example: two 244-sized trees, truncated to 64 bits
⇒ ≈ 244·2−64 = 224 collisions (false positives)

Stage 1: Find intersection between truncated j-invariants (truncated collisions)
Stage 2: Regenerate trees and check full j-invariants matching truncated collisions

3 Sorted & dense sets can be compressed by storing successive differences
Example: 244 elements of 64 bits have average difference 220 (64 → 20 bits
compression)

In $IKEp182, at least ×5− 6 compression rate (vs 44-bit path + 64-bit j-invariant part)

11 / 15

Extreme Storage Minimization

1 Drop path information
2 Truncate j-invariants

Example: two 244-sized trees, truncated to 64 bits
⇒ ≈ 244·2−64 = 224 collisions (false positives)

Stage 1: Find intersection between truncated j-invariants (truncated collisions)
Stage 2: Regenerate trees and check full j-invariants matching truncated collisions

3 Sorted & dense sets can be compressed by storing successive differences
Example: 244 elements of 64 bits have average difference 220 (64 → 20 bits
compression)

In $IKEp182, at least ×5− 6 compression rate (vs 44-bit path + 64-bit j-invariant part)
11 / 15

Plan

1 Introduction

2 Meet-in-the-Middle Isogeny Search

3 Computing a SIKE-tree

4 Intersecting two SIKE-trees

5 Application to $IKEp182

6 Conclusion

11 / 15

Application to $IKEp182 (1/2)

$IKEp182 challenge:
p = 291357 − 1 (182 bits); eA = 91, eB = 57

91 steps split: 45 (left tree) + 44 (right tree) + 2 (A leakage)
Conjugation trick (Costello et al. 2020): left tree size 244

MitM: compute and intersect two sets of 244 j-invariants

12 / 15

Application to $IKEp182 (2/2)

Process:
1 Tree-DFS (Stage 1): 4.2 core-years and 256 TiB disk space (unoptimized, 70+

TiB should be enough)

2 Sorting: sort 2 GiB chunks / core locally
3 Merge-1: 2 GiB chunks → 512 GiB chunks (256 to 1); 0.15 core-years
4 Merge-2: 512 GiB chunks → 2 TiB compressed chunks (8 to 1); 0.08 core-years
5 Sieve-3: intersect groups of 4x4 chunks (each tree) (8 TiB x 8 TiB),

parallelization; 0.77 core-years
Found 16 777 119 out of 16 777 216 expected collisions

6 Tree-DFS (Stage 2): 4.2 core-years to find matching j-invariants and paths

Total: 9.5 core-years and 256 TiB (70+ TiB should be enough)

13 / 15

Application to $IKEp182 (2/2)

Process:
1 Tree-DFS (Stage 1): 4.2 core-years and 256 TiB disk space (unoptimized, 70+

TiB should be enough)
2 Sorting: sort 2 GiB chunks / core locally

3 Merge-1: 2 GiB chunks → 512 GiB chunks (256 to 1); 0.15 core-years
4 Merge-2: 512 GiB chunks → 2 TiB compressed chunks (8 to 1); 0.08 core-years
5 Sieve-3: intersect groups of 4x4 chunks (each tree) (8 TiB x 8 TiB),

parallelization; 0.77 core-years
Found 16 777 119 out of 16 777 216 expected collisions

6 Tree-DFS (Stage 2): 4.2 core-years to find matching j-invariants and paths

Total: 9.5 core-years and 256 TiB (70+ TiB should be enough)

13 / 15

Application to $IKEp182 (2/2)

Process:
1 Tree-DFS (Stage 1): 4.2 core-years and 256 TiB disk space (unoptimized, 70+

TiB should be enough)
2 Sorting: sort 2 GiB chunks / core locally
3 Merge-1: 2 GiB chunks → 512 GiB chunks (256 to 1); 0.15 core-years

4 Merge-2: 512 GiB chunks → 2 TiB compressed chunks (8 to 1); 0.08 core-years
5 Sieve-3: intersect groups of 4x4 chunks (each tree) (8 TiB x 8 TiB),

parallelization; 0.77 core-years
Found 16 777 119 out of 16 777 216 expected collisions

6 Tree-DFS (Stage 2): 4.2 core-years to find matching j-invariants and paths

Total: 9.5 core-years and 256 TiB (70+ TiB should be enough)

13 / 15

Application to $IKEp182 (2/2)

Process:
1 Tree-DFS (Stage 1): 4.2 core-years and 256 TiB disk space (unoptimized, 70+

TiB should be enough)
2 Sorting: sort 2 GiB chunks / core locally
3 Merge-1: 2 GiB chunks → 512 GiB chunks (256 to 1); 0.15 core-years
4 Merge-2: 512 GiB chunks → 2 TiB compressed chunks (8 to 1); 0.08 core-years

5 Sieve-3: intersect groups of 4x4 chunks (each tree) (8 TiB x 8 TiB),
parallelization; 0.77 core-years
Found 16 777 119 out of 16 777 216 expected collisions

6 Tree-DFS (Stage 2): 4.2 core-years to find matching j-invariants and paths

Total: 9.5 core-years and 256 TiB (70+ TiB should be enough)

13 / 15

Application to $IKEp182 (2/2)

Process:
1 Tree-DFS (Stage 1): 4.2 core-years and 256 TiB disk space (unoptimized, 70+

TiB should be enough)
2 Sorting: sort 2 GiB chunks / core locally
3 Merge-1: 2 GiB chunks → 512 GiB chunks (256 to 1); 0.15 core-years
4 Merge-2: 512 GiB chunks → 2 TiB compressed chunks (8 to 1); 0.08 core-years
5 Sieve-3: intersect groups of 4x4 chunks (each tree) (8 TiB x 8 TiB),

parallelization; 0.77 core-years
Found 16 777 119 out of 16 777 216 expected collisions

6 Tree-DFS (Stage 2): 4.2 core-years to find matching j-invariants and paths

Total: 9.5 core-years and 256 TiB (70+ TiB should be enough)

13 / 15

Application to $IKEp182 (2/2)

Process:
1 Tree-DFS (Stage 1): 4.2 core-years and 256 TiB disk space (unoptimized, 70+

TiB should be enough)
2 Sorting: sort 2 GiB chunks / core locally
3 Merge-1: 2 GiB chunks → 512 GiB chunks (256 to 1); 0.15 core-years
4 Merge-2: 512 GiB chunks → 2 TiB compressed chunks (8 to 1); 0.08 core-years
5 Sieve-3: intersect groups of 4x4 chunks (each tree) (8 TiB x 8 TiB),

parallelization; 0.77 core-years
Found 16 777 119 out of 16 777 216 expected collisions

6 Tree-DFS (Stage 2): 4.2 core-years to find matching j-invariants and paths

Total: 9.5 core-years and 256 TiB (70+ TiB should be enough)

13 / 15

Application to $IKEp182 (2/2)

Process:
1 Tree-DFS (Stage 1): 4.2 core-years and 256 TiB disk space (unoptimized, 70+

TiB should be enough)
2 Sorting: sort 2 GiB chunks / core locally
3 Merge-1: 2 GiB chunks → 512 GiB chunks (256 to 1); 0.15 core-years
4 Merge-2: 512 GiB chunks → 2 TiB compressed chunks (8 to 1); 0.08 core-years
5 Sieve-3: intersect groups of 4x4 chunks (each tree) (8 TiB x 8 TiB),

parallelization; 0.77 core-years
Found 16 777 119 out of 16 777 216 expected collisions

6 Tree-DFS (Stage 2): 4.2 core-years to find matching j-invariants and paths

Total: 9.5 core-years and 256 TiB (70+ TiB should be enough)

13 / 15

Plan

1 Introduction

2 Meet-in-the-Middle Isogeny Search

3 Computing a SIKE-tree

4 Intersecting two SIKE-trees

5 Application to $IKEp182

6 Conclusion

13 / 15

Conclusion

Optimizations for MitM-based isogeny search
Useful generic tool: sort-and-merge intersection of large sets of 64-bit elements
The paper contains discussion on scalability of the approach

1 reuse of the 89-bit path search does not improve vOW-based estimations
2 using more RAM (e.g. 280) requires design and analysis of the architecture

(2D-mesh may be too pessimistic)
3
4 (Castryck and Decru 2022) ≈ 1 laptop-weekend1

ia.cr/2021/1421 github.com/cryptolu/sike_mitm

1

14 / 15

https://ia.cr/2021/1421
https://github.com/cryptolu/SIKE_MitM

Conclusion

Optimizations for MitM-based isogeny search
Useful generic tool: sort-and-merge intersection of large sets of 64-bit elements
The paper contains discussion on scalability of the approach

1 reuse of the 89-bit path search does not improve vOW-based estimations
2 using more RAM (e.g. 280) requires design and analysis of the architecture

(2D-mesh may be too pessimistic)

3
4 (Castryck and Decru 2022) ≈ 1 laptop-weekend1

ia.cr/2021/1421 github.com/cryptolu/sike_mitm

1

14 / 15

https://ia.cr/2021/1421
https://github.com/cryptolu/SIKE_MitM

Conclusion

Optimizations for MitM-based isogeny search
Useful generic tool: sort-and-merge intersection of large sets of 64-bit elements
The paper contains discussion on scalability of the approach

1 reuse of the 89-bit path search does not improve vOW-based estimations
2 using more RAM (e.g. 280) requires design and analysis of the architecture

(2D-mesh may be too pessimistic)
3 $IKEp217 challenge requires 1M more computations (same storage), ≈ 1 HPC-year

4 (Castryck and Decru 2022) ≈ 1 laptop-weekend1

ia.cr/2021/1421 github.com/cryptolu/sike_mitm

1

14 / 15

https://ia.cr/2021/1421
https://github.com/cryptolu/SIKE_MitM

Conclusion

Optimizations for MitM-based isogeny search
Useful generic tool: sort-and-merge intersection of large sets of 64-bit elements
The paper contains discussion on scalability of the approach

1 reuse of the 89-bit path search does not improve vOW-based estimations
2 using more RAM (e.g. 280) requires design and analysis of the architecture

(2D-mesh may be too pessimistic)
3 $IKEp217 challenge requires 1M more computations (same storage), ≈ 1 HPC-year
4 (Castryck and Decru 2022) ≈ 1 laptop-weekend1

ia.cr/2021/1421 github.com/cryptolu/sike_mitm

1Actually, a few laptop-seconds, see optimized implementation by (Oudompheng and Pope 2022)
14 / 15

https://ia.cr/2021/1421
https://github.com/cryptolu/SIKE_MitM

References I

Adj, Gora et al. (Aug. 2019). “On the Cost of Computing Isogenies Between
Supersingular Elliptic Curves”. In: SAC 2018. Ed. by Carlos Cid and
Michael J. Jacobson Jr: vol. 11349. LNCS. Springer, Heidelberg, pp. 322–343. doi:
10.1007/978-3-030-10970-7_15.

Castryck, Wouter and Thomas Decru (2022). An efficient key recovery attack on SIDH
(preliminary version). Cryptology ePrint Archive, Paper 2022/975.
https://eprint.iacr.org/2022/975.

Costello, Craig et al. (May 2020). “Improved Classical Cryptanalysis of SIKE in
Practice”. In: PKC 2020, Part II. Ed. by Aggelos Kiayias et al. Vol. 12111. LNCS.
Springer, Heidelberg, pp. 505–534. doi: 10.1007/978-3-030-45388-6_18.

Galbraith, Steven D. (1999). “Constructing Isogenies between Elliptic Curves Over
Finite Fields”. In: LMS Journal of Computation and Mathematics 2, pp. 118–138.

14 / 15

https://doi.org/10.1007/978-3-030-10970-7_15
https://eprint.iacr.org/2022/975
https://doi.org/10.1007/978-3-030-45388-6_18

References II

Oudompheng, Rémy and Giacomo Pope (2022). SageMath implementation of the
Castryck-Decru Attack on SIDH.
https://github.com/jack4818/Castryck-Decru-SageMath.

14 / 15

https://github.com/jack4818/Castryck-Decru-SageMath

Comparison of HashTable and SortMerge on a PC

Performance comparison between FastHash and SortMerge
over 64-bit integer arrays of total size 2L

10 15 20 25 30
L (log2 of array size)

0.025

0.050

0.075

0.100

0.125

0.150

0.175

tim
e

/ i
te

m
, m

icr
os

ec
on

ds

FastHash insert + lookup
sort (x2) + merge

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5ratio

Intersecting two arrays without
precomputation

10 15 20 25 30
L (log2 of array size)

0.02

0.04

0.06

0.08

0.10

tim
e

/ i
te

m
, m

icr
os

ec
on

ds

FastHash lookup
merge
sort + merge

1.5

2.0

2.5

3.0

3.5

4.0

4.5ratio

Lookup in an array with precomputation
15 / 15

	Introduction
	Meet-in-the-Middle Isogeny Search
	Computing a SIKE-tree
	Intersecting two SIKE-trees
	Application to $IKEp182
	Conclusion
	Extra
	References

