Revisiting Meet-in-the-Middle Cryptanalysis of SIDH/SIKE with Application to the \$IKEp182 Challenge

Aleksei Udovenko^{1,2}, Giuseppe Vitto²

 1 CryptoExperts 2 SnT, University of Luxembourg

 $\begin{array}{c} \mbox{Selected Areas in Cryptography 2022} \\ 25^{\mbox{th}} \mbox{ August 2022} \end{array}$

Luxembourg National <mark>Research</mark> Fund

High-level Overview

- SIDH/SIKE are isogeny-based PQ protocols
- Rely on hardness of finding *isogenies* between elliptic curves
- (Previously) Best attacks: generic claw finding $(\text{meet-in-the-middle})^{E/\langle B \rangle} \xrightarrow{\phi'_A} E/\langle A, B \rangle$
- Physical memory constraints (size × speed)
 - \Rightarrow low-memory van Oorschot-Wiener (vOW)

High-level Overview

- SIDH/SIKE are isogeny-based PQ protocols
- Rely on hardness of finding *isogenies* between elliptic curves
- (Previously) Best attacks: generic claw finding (meet-in-the-middle)^{$E/\langle B \rangle$}
- Physical memory constraints (size x speed)
 ⇒ low-memory van Oorschot-Wiener (vOW)
- this work: revisiting and optimizing the MitM approach

 ϕ_B

High-level Overview

- SIDH/SIKE are isogeny-based PQ protocols
- Rely on hardness of finding isogenies between elliptic curves
- (Previously) Best attacks: generic claw finding (meet-in-the-middle) $^{E/\langle B \rangle}$
- Physical memory constraints (size x speed)
 ⇒ low-memory van Oorschot-Wiener (vOW)
- this work: revisiting and optimizing the MitM approach
- Proof-of-concept: breaking \$IKEp182 challenge (by Microsoft) on a laptop on a weekend on an HPC cluster in a week (9 core-years)

Comparison to the Castryck-Decru Attack (Castryck and Decru 2022)

Comparison to the Castryck-Decru Attack (Castryck and Decru 2022)

- Castryck-Decru attack relies on the torsion point images
- MitM is more generally applicable (existing + future schemes)
- Generic attack in the generic setting may still be relevant for security analysis

1 Introduction

- 2 Meet-in-the-Middle Isogeny Search
- **3** Computing a SIKE-tree
- 4 Intersecting two SIKE-trees
- 5 Application to \$IKEp182

6 Conclusion

Public parameters:

- **1** prime *p* with $p + 1 = 2^{e_A} 3^{e_B}$
- **2** starting curve E with 2^{e_A} and 3^{e_B} -torsion bases

Public parameters:

- 1 prime p with $p + 1 = 2^{e_A} 3^{e_B}$
- **2** starting curve E with 2^{e_A} and 3^{e_B} -torsion bases

Alice:

- **1** computes a secret 2^{e_A} isogeny $\phi_A : E \to E/\langle A \rangle$
- **2** publishes E_A with the 3^{e_B} -torsion image on it

Public parameters:

- **1** prime *p* with $p + 1 = 2^{e_A} 3^{e_B}$
- **2** starting curve E with 2^{e_A} and 3^{e_B} -torsion bases

Alice:

- **1** computes a secret 2^{e_A} isogeny $\phi_A : E \to E/\langle A \rangle$
- **2** publishes E_A with the 3^{e_B} -torsion image on it

Bob:

computes a secret 3^{e_B} isogeny φ_B : E → E/ ⟨B⟩
 publishes E_B with the 2^{e_A}-torsion image on it

Public parameters:

- 1 prime p with $p+1=2^{e_A}3^{e_B}$
- **2** starting curve E with 2^{e_A} and 3^{e_B} -torsion bases

Alice:

- **1** computes a secret 2^{e_A} isogeny $\phi_A : E \to E/\langle A \rangle$
- **2** publishes E_A with the 3^{e_B} -torsion image on it

Bob:

computes a secret 3^{e_B} isogeny φ_B : E → E/ ⟨B⟩
 publishes E_B with the 2^{e_A}-torsion image on it

• Alice and Bob then reapply their secret isogenies on the published curves and arrive at the same shared secret $E/\langle A, B \rangle$

Public parameters:

1 prime p with $p+1=2^{e_A}3^{e_B}$

2 starting curve E with 2^{e_A} - and 3^{e_B} -torsion bases

Alice:

- 1 computes a secret 2^{e_A} isogeny $\phi_A : E \to E/\langle A \rangle$
- **2** publishes E_A with the 3^{e_B} -torsion image on it

Bob:

computes a secret 3^{e_B} isogeny φ_B : E → E/ ⟨B⟩
 publishes E_B with the 2^{e_A}-torsion image on it

• Alice and Bob then reapply their secret isogenies on the published curves and arrive at the same shared secret $E/\langle A, B \rangle$

This work: recovering the 2^{e_A} -isogeny $\phi_A : E \to E/\langle A \rangle$, given only E and $E_A = E/\langle A \rangle$

- Montgomery curves: $E_A : y^2 = x^3 + Ax^2 + x$ defined over \mathbb{F}_{p^2}
- Efficient x-only arithmetic

- Montgomery curves: $E_A : y^2 = x^3 + Ax^2 + x$ defined over \mathbb{F}_{p^2}
- Efficient x-only arithmetic
- A 2^{e_A} -isogeny decomposes into e_A 2-isogenies $\phi_i : E_{A_{i-1}} \to E_{A_i}$:

 $\phi_{\mathsf{Alice}} = \phi_{e_{\mathsf{A}}} \circ \ldots \circ \phi_1$

- Montgomery curves: $E_A : y^2 = x^3 + Ax^2 + x$ defined over \mathbb{F}_{p^2}
- Efficient x-only arithmetic
- A 2^{e_A} -isogeny decomposes into e_A 2-isogenies $\phi_i : E_{A_{i-1}} \to E_{A_i}$:

$$\phi_{\mathsf{Alice}} = \phi_{e_{\mathsf{A}}} \circ \ldots \circ \phi_1$$

- 2-isogeny $\phi_i : E_{A_{i-1}} \to E_{A_i}$:
 - requires the x-coordinate k of an order-2 point on E (the kernel gen.), $x \neq 0$
 - evaluate: $\phi_i(x) = \frac{x(kx-1)}{x-k}$
 - next curve: $A_i = 2 4k^2$

- Montgomery curves: $E_A : y^2 = x^3 + Ax^2 + x$ defined over \mathbb{F}_{p^2}
- Efficient x-only arithmetic
- A 2^{e_A} -isogeny decomposes into e_A 2-isogenies $\phi_i : E_{A_{i-1}} \to E_{A_i}$:

$$\phi_{\mathsf{Alice}} = \phi_{e_{\mathsf{A}}} \circ \ldots \circ \phi_1$$

- 2-isogeny $\phi_i : E_{A_{i-1}} \to E_{A_i}$:
 - requires the x-coordinate k of an order-2 point on E (the kernel gen.), $x \neq 0$
 - evaluate: $\phi_i(x) = \frac{x(kx-1)}{x-k}$
 - next curve: $A_i = 2 4k^2$
- The 2-kernels can be derived from the 2^{e_A} -kernel of ϕ_{Alice} by pushing through ϕ_i and raising to appropriate power $[2^{e_A-1-i}]$

1 Introduction

- 2 Meet-in-the-Middle Isogeny Search
- **3** Computing a SIKE-tree
- 4 Intersecting two SIKE-trees
- **5** Application to \$IKEp182

6 Conclusion

High-level MitM (Galbraith 1999; Adj et al. 2019)

SIKE: Left Tree

Goal:

$$\mathsf{LeftTree} = \left\{ j(\mathcal{E}_{\mathcal{A}}/\langle \mathcal{P} + [\mathbf{s}]\mathcal{Q}\rangle) \mid \mathbf{s} \in [0, 2^{\mathbf{e}_{\mathcal{A}}/2}] \right\}$$

SIKE: Right Tree

- Optimized arithmetic formulas leak 2 last steps (Costello et al. 2020)
- We express the right tree in the same shape as the left tree

Let

$$C' = 2\frac{C-6}{C+2}$$

Goal:

$$\mathsf{RightTree} = \Big\{ \textit{j}(\textit{E}_{\textit{C'}} / \langle \textit{P'} + [\textit{s}]\textit{Q'} \rangle) \mid \textit{s} \in [0, 2^{\textit{e}_{\textit{A}}/2}]$$

1 Introduction

- 2 Meet-in-the-Middle Isogeny Search
- 3 Computing a SIKE-tree
- 4 Intersecting two SIKE-trees
- 5 Application to \$IKEp182

6 Conclusion

Recursive Generation (MitM-DFS (Adj et al. 2019))

Goal:

$$\mathsf{Tree} = \left\{ j(\mathbf{\textit{E}}/\langle \mathbf{\textit{P}} + [\mathbf{\textit{s}}]\mathbf{\textit{Q}} \rangle) \mid \mathbf{\textit{s}} \in [0, 2^{\mathbf{e}_{\mathcal{A}}/2}] \right\}$$

- DFS visit tree (recursively)
 - need 2-kernel points
 - maintain 2^{e_A-i}-torsion, by pushing it through isogenies and updating accordingly
- We adapt the idea to SIKE's optimized arithmetic (e.g., ensure *x* ≠ 0)
- We adapt optimal strategy for trade-off between doublings and isogeny evaluations

1 Introduction

- 2 Meet-in-the-Middle Isogeny Search
- **3** Computing a SIKE-tree
- 4 Intersecting two SIKE-trees
- 5 Application to \$IKEp182

6 Conclusion

Sort-and-Merge

Standard MitM: hash-table (left tree), lookups (right tree)

- O(N) insertions/lookups
- "Optimal" if O(1) random memory access
- Physically impossible on large scale

Sort-and-Merge

Standard MitM: hash-table (left tree), lookups (right tree)

- O(N) insertions/lookups
- "Optimal" if O(1) random memory access
- Physically impossible on large scale
- Sort-and-Merge
 - *O*(*N*log *N*) comparisons/swaps
 - Mostly sequential/local access possible
 - The constant behind $\log N$ is small in practice (e.g. radix sort)

Sort-and-Merge

Standard MitM: hash-table (left tree), lookups (right tree)

- O(N) insertions/lookups
- "Optimal" if O(1) random memory access
- Physically impossible on large scale
- Sort-and-Merge
 - *O*(*N*log *N*) comparisons/swaps
 - Mostly sequential/local access possible
 - The constant behind log *N* is small in practice (e.g. radix sort)
 - (Adj et al. 2019) considered 2D-mesh sorting as physically optimal. However, it is not clear at which scale the physical limits start to apply.
 - Although we use only 2^{45} storage, the limit of that paper set to 2^{80} seems not that far to actually reach physical limitations.

- 1 Drop path information
- 2 Truncate *j*-invariants **Example**: two 2^{44} -sized trees, truncated to 64 bits $\Rightarrow \approx 2^{44 \cdot 2 - 64} = 2^{24}$ collisions (false positives)

- **1** Drop path information
- **2** Truncate *j*-invariants **Example**: two 2^{44} -sized trees, truncated to 64 bits $\Rightarrow \approx 2^{44\cdot 2-64} = 2^{24}$ collisions (false positives)
- Stage 1: Find intersection between truncated *j*-invariants (truncated collisions) Stage 2: Regenerate trees and check full *j*-invariants matching truncated collisions

- **1** Drop path information
- **2** Truncate *j*-invariants **Example**: two 2^{44} -sized trees, truncated to 64 bits $\Rightarrow \approx 2^{44 \cdot 2 - 64} = 2^{24}$ collisions (false positives)

Stage 1: Find intersection between truncated *j*-invariants (truncated collisions) Stage 2: Regenerate trees and check full *j*-invariants matching truncated collisions

3 Sorted & dense sets can be compressed by storing successive differences **Example**: 2^{44} elements of 64 bits have average difference 2^{20} (64 \rightarrow 20 bits compression)

- 1 Drop path information
- **2** Truncate *j*-invariants **Example**: two 2^{44} -sized trees, truncated to 64 bits $\Rightarrow \approx 2^{44\cdot 2-64} = 2^{24}$ collisions (false positives)

Stage 1: Find intersection between truncated *j*-invariants (truncated collisions) Stage 2: Regenerate trees and check full *j*-invariants matching truncated collisions

3 Sorted & dense sets can be compressed by storing successive differences **Example**: 2^{44} elements of 64 bits have average difference 2^{20} (64 \rightarrow 20 bits compression)

In \$IKEp182, at least $\times 5-6$ compression rate (vs 44-bit path + 64-bit *j*-invariant part)

1 Introduction

- 2 Meet-in-the-Middle Isogeny Search
- **3** Computing a SIKE-tree
- 4 Intersecting two SIKE-trees

5 Application to \$IKEp182

6 Conclusion

\$IKEp182 challenge:

- $p = 2^{91}3^{57} 1$ (182 bits); $e_A = 91, e_B = 57$
- 91 steps split: 45 (left tree) + 44 (right tree) + 2 (A leakage)
- Conjugation trick (Costello et al. 2020): left tree size 2^{44}
- MitM: compute and intersect two sets of 2^{44} *j*-invariants

Process:

Tree-DFS (Stage 1): 4.2 core-years and 256 TiB disk space (unoptimized, 70+ TiB should be enough)

- **Tree-DFS (Stage 1)**: 4.2 core-years and 256 TiB disk space (unoptimized, 70+ TiB should be enough)
- **2** Sorting: sort 2 GiB chunks / core locally

- **Tree-DFS (Stage 1)**: 4.2 core-years and 256 TiB disk space (unoptimized, 70+ TiB should be enough)
- **2** Sorting: sort 2 GiB chunks / core locally
- **3 Merge-1**: 2 GiB chunks \rightarrow 512 GiB chunks (256 to 1); 0.15 core-years

- **Tree-DFS (Stage 1)**: 4.2 core-years and 256 TiB disk space (unoptimized, 70+ TiB should be enough)
- **2** Sorting: sort 2 GiB chunks / core locally
- **3 Merge-1**: 2 GiB chunks \rightarrow 512 GiB chunks (256 to 1); 0.15 core-years
- **4 Merge-2**: 512 GiB chunks \rightarrow 2 TiB compressed chunks (8 to 1); 0.08 core-years

- **Tree-DFS (Stage 1)**: 4.2 core-years and 256 TiB disk space (unoptimized, 70+ TiB should be enough)
- **2** Sorting: sort 2 GiB chunks / core locally
- **3 Merge-1**: 2 GiB chunks \rightarrow 512 GiB chunks (256 to 1); 0.15 core-years
- **4** Merge-2: 512 GiB chunks \rightarrow 2 TiB compressed chunks (8 to 1); 0.08 core-years
- Sieve-3: intersect groups of 4x4 chunks (each tree) (8 TiB x 8 TiB), parallelization; 0.77 core-years
 Found 16 777 119 out of 16 777 216 expected collisions

- **Tree-DFS (Stage 1)**: 4.2 core-years and 256 TiB disk space (unoptimized, 70+ TiB should be enough)
- **2** Sorting: sort 2 GiB chunks / core locally
- **3 Merge-1**: 2 GiB chunks \rightarrow 512 GiB chunks (256 to 1); 0.15 core-years
- **4 Merge-2**: 512 GiB chunks \rightarrow 2 TiB compressed chunks (8 to 1); 0.08 core-years
- Sieve-3: intersect groups of 4x4 chunks (each tree) (8 TiB x 8 TiB), parallelization; 0.77 core-years
 Found 16 777 119 out of 16 777 216 expected collisions
- **6** Tree-DFS (Stage 2): 4.2 core-years to find matching *j*-invariants and paths

Process:

- **Tree-DFS (Stage 1)**: 4.2 core-years and 256 TiB disk space (unoptimized, 70+ TiB should be enough)
- 2 Sorting: sort 2 GiB chunks / core locally
- **3 Merge-1**: 2 GiB chunks \rightarrow 512 GiB chunks (256 to 1); 0.15 core-years
- 4 Merge-2: 512 GiB chunks \rightarrow 2 TiB compressed chunks (8 to 1); 0.08 core-years
- Sieve-3: intersect groups of 4x4 chunks (each tree) (8 TiB x 8 TiB), parallelization; 0.77 core-years
 Found 16 777 119 out of 16 777 216 expected collisions
- **6** Tree-DFS (Stage 2): 4.2 core-years to find matching *j*-invariants and paths

Total: 9.5 core-years and 256 TiB (70+ TiB should be enough)

1 Introduction

- 2 Meet-in-the-Middle Isogeny Search
- **3** Computing a SIKE-tree
- 4 Intersecting two SIKE-trees
- 5 Application to \$IKEp182

6 Conclusion

- Optimizations for MitM-based isogeny search
- Useful generic tool: sort-and-merge intersection of large sets of 64-bit elements
- The paper contains discussion on scalability of the approach

Conclusion

Optimizations for MitM-based isogeny search

- Useful generic tool: sort-and-merge intersection of large sets of 64-bit elements
- The paper contains discussion on scalability of the approach
 - 1 reuse of the 89-bit path search does not improve vOW-based estimations
 - 2 using more RAM (e.g. 2^{80}) requires design and analysis of the architecture (2D-mesh may be too pessimistic)

Conclusion

Optimizations for MitM-based isogeny search

- Useful generic tool: sort-and-merge intersection of large sets of 64-bit elements
- The paper contains discussion on scalability of the approach
 - **1** reuse of the 89-bit path search does not improve vOW-based estimations
 - 2 using more RAM (e.g. 2^{80}) requires design and analysis of the architecture (2D-mesh may be too pessimistic)
 - 3 \$IKEp217 challenge requires 1M more computations (same storage), pprox 1 HPC-year

Conclusion

Optimizations for MitM-based isogeny search

- Useful generic tool: sort-and-merge intersection of large sets of 64-bit elements
- The paper contains discussion on scalability of the approach
 - 1 reuse of the 89-bit path search does not improve vOW-based estimations
 - using more RAM (e.g. 2⁸⁰) requires design and analysis of the architecture (2D-mesh may be too pessimistic)
 - 3 \$IKEp217 challenge requires 1M more computations (same storage), \approx 1 HPC-year
 - 4 (Castryck and Decru 2022) pprox 1 laptop-weekend 1

¹Actually, a few laptop-seconds, see optimized implementation by (Oudompheng and Pope 2022)

Adj, Gora et al. (Aug. 2019). "On the Cost of Computing Isogenies Between Supersingular Elliptic Curves". In: SAC 2018. Ed. by Carlos Cid and Michael J. Jacobson Jr: vol. 11349. LNCS. Springer, Heidelberg, pp. 322–343. DOI: 10.1007/978-3-030-10970-7_15.

- Castryck, Wouter and Thomas Decru (2022). An efficient key recovery attack on SIDH (preliminary version). Cryptology ePrint Archive, Paper 2022/975. https://eprint.iacr.org/2022/975.
- Costello, Craig et al. (May 2020). "Improved Classical Cryptanalysis of SIKE in Practice". In: *PKC 2020, Part II*. Ed. by Aggelos Kiayias et al. Vol. 12111. LNCS. Springer, Heidelberg, pp. 505–534. DOI: 10.1007/978-3-030-45388-6_18.
 Galbraith, Steven D. (1999). "Constructing Isogenies between Elliptic Curves Over Finite Fields". In: *LMS Journal of Computation and Mathematics* 2, pp. 118–138.

Oudompheng, Rémy and Giacomo Pope (2022). SageMath implementation of the Castryck-Decru Attack on SIDH. https://github.com/jack4818/Castryck-Decru-SageMath.

Comparison of HashTable and SortMerge on a PC

15 / 15