# **On Division Property and Degree Bounds**

Aleksei Udovenko based on joint work with Gregor Leander and Phil Hebborn BFA 2023, September 4<sup>th</sup>

SnT, University of Luxembourg

### Problem formulation

Degree bounds

Division property

Perfect division property and degree lower bounds

Conclusions

ANF:  $f : \mathbb{F}_2^n \to \mathbb{F}_2$  $f(\mathbf{x}) = \sum \lambda_{\mathbf{u}} \prod x_j^{\mathbf{u}_j}$ 

 $\mathbf{u} \in \mathbb{F}_2^n$   $1 \leq j \leq n$ 

 $\lambda_{\mu} \in \mathbb{F}_2$ 

ANF:  $f: \mathbb{F}_{2}^{n} \to \mathbb{F}_{2}$   $f(\mathbf{x}) = \sum_{\mathbf{u} \in \mathbb{F}_{2}^{n}} \lambda_{\mathbf{u}} \prod_{1 \le j \le n} x_{j}^{u_{j}} = \boxed{\sum_{\mathbf{u} \in \mathbb{F}_{2}^{n}} \lambda_{\mathbf{u}} \mathbf{x}^{\mathbf{u}}}$ 

 $\lambda_{oldsymbol{u}}\in\mathbb{F}_2$ 

ANF:  

$$f: \mathbb{F}_{2}^{n} \to \mathbb{F}_{2}$$

$$f(\mathbf{x}) = \sum_{\mathbf{u} \in \mathbb{F}_{2}^{n}} \lambda_{\mathbf{u}} \prod_{1 \le j \le n} x_{j}^{u_{j}} = \sum_{\mathbf{u} \in \mathbb{F}_{2}^{n}} \lambda_{\mathbf{u}} \mathbf{x}^{\mathbf{u}}$$

 $\lambda_{\boldsymbol{u}} \in \mathbb{F}_2$ 

Partial order:  $\boldsymbol{u} \leq \boldsymbol{v} \quad \Leftrightarrow \quad \forall i \ \boldsymbol{u}_i \leq \boldsymbol{v}_i$ 

ANF:  

$$f: \mathbb{F}_{2}^{n} \to \mathbb{F}_{2}$$

$$f(\mathbf{x}) = \sum_{\mathbf{u} \in \mathbb{F}_{2}^{n}} \lambda_{\mathbf{u}} \prod_{1 \le j \le n} x_{j}^{u_{j}} = \sum_{\mathbf{u} \in \mathbb{F}_{2}^{n}} \lambda_{\mathbf{u}} \mathbf{x}^{\mathbf{u}}$$

 $\lambda_{\boldsymbol{u}} \in \mathbb{F}_2$ 

**Partial order:**  $\boldsymbol{u} \preceq \boldsymbol{v} \iff \forall i \ \boldsymbol{u}_i \leq \boldsymbol{v}_i \iff \boldsymbol{x}^{\boldsymbol{u}} \mid \boldsymbol{x}^{\boldsymbol{v}}$ 

ANF:  

$$f: \mathbb{F}_{2}^{n} \to \mathbb{F}_{2}$$

$$f(\mathbf{x}) = \sum_{\mathbf{u} \in \mathbb{F}_{2}^{n}} \lambda_{\mathbf{u}} \prod_{1 \le j \le n} x_{j}^{u_{j}} = \sum_{\mathbf{u} \in \mathbb{F}_{2}^{n}} \lambda_{\mathbf{u}} \mathbf{x}^{\mathbf{u}} \qquad \lambda_{\mathbf{u}} \in \mathbb{F}_{2}$$

Partial order:  $\boldsymbol{u} \preceq \boldsymbol{v} \iff \forall i \ \boldsymbol{u}_i \leq \boldsymbol{v}_i \iff \boldsymbol{x}^{\boldsymbol{u}} \mid \boldsymbol{x}^{\boldsymbol{v}} \iff \boldsymbol{v}^{\boldsymbol{u}} = 1$ 

ANF:  

$$f: \mathbb{F}_{2}^{n} \to \mathbb{F}_{2}$$

$$f(\mathbf{x}) = \sum_{\mathbf{u} \in \mathbb{F}_{2}^{n}} \lambda_{\mathbf{u}} \prod_{1 \le j \le n} x_{j}^{u_{j}} = \sum_{\mathbf{u} \in \mathbb{F}_{2}^{n}} \lambda_{\mathbf{u}} \mathbf{x}^{\mathbf{u}} \qquad \lambda_{\mathbf{u}} \in \mathbb{F}_{2}$$

Partial order:  $\boldsymbol{u} \preceq \boldsymbol{v} \iff \forall i \ \boldsymbol{u}_i \leq \boldsymbol{v}_i \iff \boldsymbol{x}^{\boldsymbol{u}} \mid \boldsymbol{x}^{\boldsymbol{v}} \iff \boldsymbol{v}^{\boldsymbol{u}} = 1$ 

Inversion:

$$\lambda_{\boldsymbol{u}} = \sum_{\boldsymbol{x} \preceq \boldsymbol{u}} f(\boldsymbol{x})$$

ANF:  

$$f: \mathbb{F}_{2}^{n} \to \mathbb{F}_{2}$$

$$f(\mathbf{x}) = \sum_{\mathbf{u} \in \mathbb{F}_{2}^{n}} \lambda_{\mathbf{u}} \prod_{1 \le j \le n} x_{j}^{u_{j}} = \sum_{\mathbf{u} \in \mathbb{F}_{2}^{n}} \lambda_{\mathbf{u}} \mathbf{x}^{\mathbf{u}} \qquad \lambda_{\mathbf{u}} \in \mathbb{F}_{2}$$

Partial order:  $\boldsymbol{u} \preceq \boldsymbol{v} \iff \forall i \ \boldsymbol{u}_i \leq \boldsymbol{v}_i \iff \boldsymbol{x}^{\boldsymbol{u}} \mid \boldsymbol{x}^{\boldsymbol{v}} \iff \boldsymbol{v}^{\boldsymbol{u}} = 1$ 

Inversion:

$$\lambda_{\boldsymbol{u}} = \sum_{\boldsymbol{x} \leq \boldsymbol{u}} f(\boldsymbol{x}) \qquad f(\boldsymbol{x}) = \sum_{\boldsymbol{u} \leq \boldsymbol{x}} \lambda_{\boldsymbol{u}}$$

1

ANF: 
$$f(\mathbf{x}) = \sum_{\mathbf{u} \in \mathbb{F}_2^n} \lambda_{\mathbf{u}} \mathbf{x}^{\mathbf{u}}$$

Algebraic degree:  $\deg f = \max_{\boldsymbol{u}: \lambda_{\boldsymbol{u}}=1} \operatorname{wt}(\boldsymbol{u})$ 

ANF: 
$$f(\mathbf{x}) = \sum_{\mathbf{u} \in \mathbb{F}_2^n} \lambda_{\mathbf{u}} \mathbf{x}^{\mathbf{u}}$$

Algebraic degree:
$$\deg f = \max_{\substack{u: \ \lambda_u = 1}} \operatorname{wt}(u)$$
 $F: \mathbb{F}_2^n \to \mathbb{F}_2^m$  $\deg F = \max_i \deg F_i$ (min also makes sense)

ANF:
$$f(\mathbf{x}) = \sum_{\mathbf{u} \in \mathbb{F}_2^n} \lambda_{\mathbf{u}} \mathbf{x}^{\mathbf{u}}$$
Algebraic degree: $\deg f = \max_{\mathbf{u}: \lambda_{\mathbf{u}} = 1} \operatorname{wt}(\mathbf{u})$  $F: \mathbb{F}_2^n \to \mathbb{F}_2^m$  $\deg F = \max_i \deg F_i$  (min also makes sense)

#### Problem

Given  $F : \mathbb{F}_2^n \to \mathbb{F}_2^m$  (in some form), determine or bound its algebraic degree Typically:  $F = G^{(r)} \circ G^{(r-1)} \circ \ldots \circ G^{(1)}$  with explicit  $G^{(i)}$ 

#### Example

• 
$$\deg F = n - 1$$

#### Example

- $\deg F = n 1$
- F does not contain any of the monomials  $x_i y_j$  for all pairs (i, j)

#### Example

- $\deg F = n 1$
- F does not contain any of the monomials  $x_i y_j$  for all pairs (i, j)
- in fact, F does not contain any multiple of those

#### Example

- deg F = n 1
- F does not contain any of the monomials  $x_i y_j$  for all pairs (i, j)
- in fact, F does not contain any multiple of those
- $\Rightarrow$   $F(a,b) + F(a+\delta,b) + F(a,b+\delta') + F(a+\delta,b+\delta') = 0$   $\forall a,b,\delta,\delta'$

#### Example

Let  $F(\mathbf{x}, \mathbf{y}) = \mathbf{G}(\mathbf{x}) + \mathbf{H}(\mathbf{y}) : \mathbb{F}_2^{2n} \to \mathbb{F}_2^n$  with deg  $\mathbf{G} = \deg \mathbf{H} = n - 1$ . Then:

- deg F = n 1
- F does not contain any of the monomials  $x_i y_j$  for all pairs (i, j)
- in fact, F does not contain any multiple of those
- $\Rightarrow$   $F(a,b) + F(a+\delta,b) + F(a,b+\delta') + F(a+\delta,b+\delta') = 0$   $\forall a,b,\delta,\delta'$

Applications: integral cryptanalysis, cube attacks

Important: ciphers are very structured, we want to catch any such deficiencies

## Iterated Structures



## **Iterated Structures**



## **Iterated Structures**



#### Problem formulation

Degree bounds

Classic bounds

Bound unification and comparison

Bound summary

Division property

Perfect division property and degree lower bounds

#### Conclusions

#### Problem formulation

Degree bounds

Classic bounds

Bound unification and comparison

Bound summary

Division property

Perfect division property and degree lower bounds

### Conclusions

## Naive bound

### Proposition (Naive bound)

Let  $f = g \circ H$ . Then,

$$\deg f \leq \deg g \times \deg H$$

## Naive bound

### Proposition (Naive bound)

Let  $f = \mathbf{g} \circ \mathbf{H}$ . Then,

$$\deg f \leq \deg g \times \deg H$$

### Example

Say  $\mathbf{g}(\mathbf{x}) = x_1 x_2 x_3$ . Then,

$$f(\mathbf{x}) = \mathbf{g}(H(\mathbf{x})) = \underbrace{H_1(x)}_{\leq \deg H} \cdot \underbrace{H_2(x)}_{\leq \deg H} \cdot \underbrace{H_3(x)}_{\leq \deg H}_{\deg g \text{ times}}$$

### Naive bound

### Proposition (Naive bound)

Let  $f = \mathbf{g} \circ \mathbf{H}$ . Then,

$$\deg f \leq \deg g \times \deg H$$

#### Example

Say  $g(x) = x_1 x_2 x_3$ . Then,

$$f(\mathbf{x}) = \mathbf{g}(H(\mathbf{x})) = \underbrace{H_1(x)}_{\leq \deg H} \cdot \underbrace{H_2(x)}_{\leq \deg H} \cdot \underbrace{H_3(x)}_{\leq \deg H}_{\deg \mathbf{g} \text{ times}}$$

Important idea: g a monomial function covers a lot of cases

Theorem (Boura and Canteaut 2013; Boura, Canteaut, and De Cannière 2011) Let  $f = g \circ H$  with H a bijection. Then,

$$\deg f \leq n - \left\lceil \frac{n - \deg g}{\deg H^{-1}} \right\rceil$$

Theorem (Boura and Canteaut 2013; Boura, Canteaut, and De Cannière 2011) Let  $f = g \circ H$  with H a bijection. Then,

$$\deg f \leq n - \left\lceil \frac{n - \deg g}{\deg H^{-1}} \right\rceil$$

Degree deficit can not drop by a factor more than deg  $H^{-1}$  when pre-composing H

#### Boura-Canteaut bound - example (SPN)







## Carlet bound

Theorem (Carlet 2020)

Let  $f = \mathbf{g} \circ \mathbf{H}$ , where  $\mathbf{H} : \mathbb{F}_2^n \to \mathbb{F}_2^m$ . Then,

$$\deg f \leq \deg \frac{g}{g} + \deg \mathbb{1}_{\Gamma_H} - m$$

where

• 
$$\Gamma_H = \{(\mathbf{x}, \mathbf{H}(\mathbf{x})) \mid \mathbf{x} \in \mathbb{F}_2^n\}$$
  
•  $\mathbb{1}_{\Gamma_H} : \mathbb{F}_2^{n+m} \to \mathbb{F}_2 : (\mathbf{x}, \mathbf{y}) \mapsto \begin{cases} 1 & \text{if } \mathbf{H}(\mathbf{x}) = \mathbf{y} \\ 0 & \text{otherwise} \end{cases}$ 

#### Problem formulation

## Degree bounds

Classic bounds

Bound unification and comparison

Bound summary

Division property

Perfect division property and degree lower bounds

#### Conclusions

## Bound unification 1

For  $F : \mathbb{F}_2^n \to \mathbb{F}_2^m$  define (Boura and Canteaut 2013)

$$\delta_{k}(F) = \max_{lpha \in \mathbb{F}_{2}^{n}, \, \mathrm{wt} \, lpha \leq k} \deg F^{lpha}$$

For  $F : \mathbb{F}_2^n \to \mathbb{F}_2^m$  define (Boura and Canteaut 2013)

$$\delta_{k}(F) = \max_{\alpha \in \mathbb{F}_{2}^{n}, \, \text{wt} \, \alpha \leq k} \deg F^{\alpha} = \max_{g : \mathbb{F}_{2}^{m} \to \mathbb{F}_{2}, \, \deg g \leq k} \deg (g \circ F)$$

For  $F : \mathbb{F}_2^n \to \mathbb{F}_2^m$  define (Boura and Canteaut 2013)

$$\delta_{k}(F) = \max_{\alpha \in \mathbb{F}_{2}^{n}, \, \text{wt} \, \alpha \leq k} \deg F^{\alpha} = \max_{g: \mathbb{F}_{2}^{m} \to \mathbb{F}_{2}, \, \deg g \leq k} \deg (g \circ F)$$

Essentially a "precomputed" answer to the problem (example):

| k                     | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
|-----------------------|---|---|---|---|---|---|---|---|
| $\delta_{\mathbf{k}}$ | 3 | 4 | 6 | 7 | 7 | 7 | 7 | 8 |

For  $F : \mathbb{F}_2^n \to \mathbb{F}_2^m$  define (Boura and Canteaut 2013)

$$\delta_{k}(F) = \max_{\alpha \in \mathbb{F}_{2}^{n}, \, \text{wt} \, \alpha \leq k} \deg F^{\alpha} = \max_{g : \mathbb{F}_{2}^{m} \to \mathbb{F}_{2}, \, \deg g \leq k} \deg (g \circ F)$$

Essentially a "precomputed" answer to the problem (example):

 k
 1
 2
 3
 4
 5
 6
 7
 8

  $\delta_k$  3
 4
 6
 7
 7
 7
 8

Question: how does it relate to the previous bounds?

## Bound unification 2

Theorem (Boura and Canteaut 2013)  $\delta_{\ell}(F^{-1}) < n - k \iff \delta_{k}(F) < n - \ell$ 

### Bound unification 2

Theorem (Boura and Canteaut 2013)  $\delta_{\ell}(F^{-1}) < n - k \iff \delta_{k}(F) < n - \ell$ 

 $\Rightarrow$  knowing  $d = \deg F^{-1} = \delta_1(F^{-1})$  yields  $\delta_{n-d-1}(F) < n-1$
## Bound unification 2

Theorem (Boura and Canteaut 2013)  $\delta_{\ell}(F^{-1}) < n - k \iff \delta_{k}(F) < n - \ell$ 

 $\Rightarrow$  knowing  $d = \deg F^{-1} = \delta_1(F^{-1})$  yields  $\delta_{n-d-1}(F) < n-1$ 

 $\Rightarrow$  knowing  $\delta(F)$  is equivalent to knowing  $\delta(F^{-1})$ 

## Bound unification 2

# Theorem (Boura and Canteaut 2013)

 $\delta_{\ell}(F^{-1}) < n - k \iff \delta_{k}(F) < n - \ell$ 

 $\Rightarrow$  knowing  $d = \deg F^{-1} = \delta_1(F^{-1})$  yields  $\delta_{n-d-1}(F) < n-1$ 

 $\Rightarrow$  knowing  $\delta(F)$  is equivalent to knowing  $\delta(F^{-1})$ 

### Theorem (Udovenko 2021)

The following are equivalent:

- δ<sub>ν</sub>(F) ≥ u
- $\exists$  monomial  $\mathbf{x}^{\alpha}\mathbf{y}^{\beta}$  in  $\mathbb{1}_{\Gamma_{F}}(\mathbf{x},\mathbf{y})$  with
  - $\deg_{\mathbf{x}} \mathbf{x}^{\alpha} \mathbf{y}^{\beta} = \operatorname{wt} \alpha \geq \mathbf{u}$ , and
  - $\deg_{\mathbf{y}} \mathbf{x}^{\alpha} \mathbf{y}^{\beta} = \operatorname{wt} \beta \geq m \mathbf{v}$

## Bound unification 2

Theorem (Boura and Canteaut 2013)  $\delta_{\ell}(F^{-1}) < n - k \iff \delta_{k}(F) < n - \ell$ 

 $\Rightarrow$  knowing  $d = \deg F^{-1} = \delta_1(F^{-1})$  yields  $\delta_{n-d-1}(F) < n-1$ 

 $\Rightarrow$  knowing  $\delta(F)$  is equivalent to knowing  $\delta(F^{-1})$ 

Theorem (Udovenko 2021)

The following are equivalent:

- $\delta_{\mathbf{v}}(F) = \mathbf{u}$  with minimal such  $\mathbf{v}$  (i.e.,  $\delta_{\mathbf{v}-1}(F) < \mathbf{u}$ )
- $\exists$  maximal monomial  $\mathbf{x}^{\alpha}\mathbf{y}^{\beta}$  in  $\mathbb{1}_{\Gamma_{F}}(\mathbf{x}, \mathbf{y})$  with wt  $\alpha = \mathbf{u}$ , wt  $\beta = m \mathbf{v}$

### **Bound comparison**

$$F: (\mathbb{F}_{2^{7}})^{2} \rightarrow (\mathbb{F}_{2^{7}})^{2}: (x_{L}, x_{R}) \mapsto (x_{L}^{3}, x_{R}^{1/3})$$

 $\deg F = \deg F^{-1} = 4, \ \deg \mathbb{1}_{\Gamma_F} = 20$ 



#### Bound comparison

$$F: (\mathbb{F}_{2^7})^2 \to (\mathbb{F}_{2^7})^2: (x_L, x_R) \mapsto (x_L^3, x_R^{1/3})$$

 $\deg F = \deg F^{-1} = 4, \ \deg \mathbb{1}_{\Gamma_F} = 20$ 

- naive bound
- Boura-Canteaut bound  $(\deg F^{-1})$
- Carlet bound  $(\deg \mathbb{1}_{\Gamma_F})$
- maximal degree pairs of 1<sub>Γ<sub>F</sub></sub>
   / extremal δ(F) values



#### Problem formulation

## Degree bounds

Classic bounds

Bound unification and comparison

Bound summary

Division property

Perfect division property and degree lower bounds

#### Conclusions

## Bound summary



12

Problem formulation

Degree bounds

Division property

- From state-based to bit-based
- On bit-based division property
- Computational aspects

Perfect division property and degree lower bounds

#### Conclusions

Problem formulation

Degree bounds

Division property

From state-based to bit-based

On bit-based division property

Computational aspects

Perfect division property and degree lower bounds

#### Conclusions











#### Proposition

 $\deg F^{(r)} \circ F^{(r-1)} \circ \ldots \circ F^{(2)} \circ F^{(1)} \leq d_0$ 

$$\begin{array}{c} d_{0} = \delta_{d_{1}}(F^{(1)}) \quad d_{1} = \delta_{d_{2}}(F^{(2)}) \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\$$

#### Proposition

 $\deg F^{(r)} \circ F^{(r-1)} \circ \ldots \circ F^{(2)} \circ F^{(1)} \leq d_0$ 

#### Proposition

 $\delta_{\ell}(F^{(r)} \circ F^{(r-1)} \circ \ldots \circ F^{(2)} \circ F^{(1)}) \leq d_0 \text{ by starting from } d_n = \ell$ 

# Proposition deg $F^{(r)} \circ F^{(r-1)} \circ \ldots \circ F^{(2)} \circ F^{(1)} \leq d_0$

#### Proposition

 $\delta_{\ell}(F^{(r)} \circ F^{(r-1)} \circ \ldots \circ F^{(2)} \circ F^{(1)}) \leq d_0$  by starting from  $d_n = \ell$ 

Going from the left requires initial guess on the degree  $(d_0)$ 

## Word-based division property

#### Definition

Let 
$$F : (\mathbb{F}_2^n)^2 \to (\mathbb{F}_2^n)^2 : (\mathbf{x}_L, \mathbf{x}_R) \mapsto (F_L(\mathbf{x}_L, \mathbf{x}_R), F_R(\mathbf{x}_L, \mathbf{x}_R)).$$

• take a product of at most  $k_L$  outputs of  $F_L$  and at most  $k_R$  outputs of  $F_R$ 

## Word-based division property

#### Definition

Let 
$$F : (\mathbb{F}_2^n)^2 \to (\mathbb{F}_2^n)^2 : (\mathbf{x}_L, \mathbf{x}_R) \mapsto (F_L(\mathbf{x}_L, \mathbf{x}_R), F_R(\mathbf{x}_L, \mathbf{x}_R)).$$

- take a product of at most  $k_L$  outputs of  $F_L$  and at most  $k_R$  outputs of  $F_R$
- what are the maximal degree pairs in the two input parts that can be achieved?

## Word-based division property

#### Definition

Let 
$$F : (\mathbb{F}_2^n)^2 \to (\mathbb{F}_2^n)^2 : (\mathbf{x}_L, \mathbf{x}_R) \mapsto (F_L(\mathbf{x}_L, \mathbf{x}_R), F_R(\mathbf{x}_L, \mathbf{x}_R)).$$

- take a product of at most  $k_L$  outputs of  $F_L$  and at most  $k_R$  outputs of  $F_R$
- what are the maximal degree pairs in the two input parts that can be achieved?

$$\begin{split} \delta_{\mathbf{k}_{L},\mathbf{k}_{R}}(F) &= \mathrm{MaxSet} \{ \quad (\mathsf{wt}\,\alpha_{1},\mathsf{wt}\,\alpha_{2}) \\ & | \quad (\beta_{L},\beta_{R}) \in (\mathbb{F}_{2}^{n})^{2}, \quad \mathsf{wt}\,\beta_{L} \leq \mathbf{k}_{L}, \quad \mathsf{wt}\,\beta_{R} \leq \mathbf{k}_{R}, \\ & F(\mathbf{x}_{L},\mathbf{x}_{R})^{\beta_{L}||\beta_{R}} \text{ contains } \mathbf{x}_{L}^{\alpha_{L}}\mathbf{x}_{R}^{\alpha_{R}} \ \, \} \end{split}$$







Proposition (analogy to 1D)

 $\begin{aligned} &d_0 = (k_L, k_R) \text{ is a maximal reachable pair (from } d_r = (0, 1)) \\ &\Rightarrow (F^{(r)}{}_R \circ F^{(r-1)} \circ \ldots)(\mathbf{x}_L, \mathbf{x}_R) \text{ may not contain monomials } \mathbf{x}_L^{\alpha_L} \mathbf{x}_R^{\alpha_R} \\ &\text{with } (\text{wt } \alpha_L, \text{wt } \alpha_R) \succ (k_L, k_R) \end{aligned}$ 



Proposition (better phrased)

 $\begin{aligned} d_0 &= (k_L, k_R) \text{ can NOT be reached (from } d_r = (0, 1)) \\ &\Rightarrow (F^{(r)}_R \circ F^{(r-1)} \circ \ldots)(\mathbf{x}_L, \mathbf{x}_R) \text{ does NOT contain monomials } \mathbf{x}_L^{\alpha_L} \mathbf{x}_R^{\alpha_R} \\ &\text{with } (\text{wt } \alpha_L, \text{wt } \alpha_R) \succeq (k_L, k_R) \end{aligned}$ 



#### Definition (Trail)

A sequence  $(d_0, \ldots, d_r), d_i \in \{0, \ldots, n\}^2$  is called a **trail** if  $d_i \in \delta_{d_{i+1}}(F^{(i+1)})$  or all *i*, denoted

$$d_0 \xrightarrow{F^{(1)}} d_1 \xrightarrow{F^{(2)}} \ldots \xrightarrow{F^{(r-1)}} d_{r-1} \xrightarrow{F^{(r)}} d_r$$

## Bit-based division property (conventional)



#### Definition

$$\delta_{\boldsymbol{k}}(F) = \operatorname{MaxSet}\{ \ \alpha \ | \ \beta \leq \boldsymbol{k}, \ F(\boldsymbol{x})^{\beta} \text{ contains } \boldsymbol{x}^{\alpha} \}$$

#### Proposition

$$d_0 = \mathbf{k}$$
 can **NOT** be reached (from  $d_r = (0, 1, 0, \dots, 0)$ )

 $\Rightarrow (F^{(r)}_2 \circ F^{(r-1)} \circ \ldots)(\mathbf{x})$  does **NOT** contain monomial multiples of  $\mathbf{x}^k$ 

## Bit-based division property (simpler formulation, Hu, Sun, Wang, and Wang 2020)



#### Definition

 $x^{\boldsymbol{u}} \xrightarrow{F} y^{\boldsymbol{v}}$  if  $F(x)^{\boldsymbol{v}}$  contains a multiple of  $x^{\boldsymbol{u}}$  in its ANF

## Bit-based division property (simpler formulation, Hu, Sun, Wang, and Wang 2020)



#### Definition

 $x^{\boldsymbol{\mu}} \xrightarrow{F} y^{\boldsymbol{\nu}}$  if  $F(x)^{\boldsymbol{\nu}}$  contains a multiple of  $x^{\boldsymbol{\mu}}$  in its ANF

#### Proposition

Fix 
$$\boldsymbol{u}, \boldsymbol{v}$$
. Then,  $\nexists \boldsymbol{w}_1, \dots, \boldsymbol{w}_{r-1} : (\boldsymbol{x}^{\boldsymbol{u}} \xrightarrow{F^{(1)}} \boldsymbol{y}_{(1)}^{\boldsymbol{w}_1} \to \dots \to \boldsymbol{y}_{(r-1)}^{\boldsymbol{w}_{r-1}} \xrightarrow{F^{(r)}} \boldsymbol{z}^{\boldsymbol{v}})$   
implies  $\boldsymbol{x}^{\boldsymbol{u}} \xrightarrow{F^{r} \circ \dots \circ F^1} \boldsymbol{z}^{\boldsymbol{v}}$  does not hold  $(F(\boldsymbol{z})^{\boldsymbol{v}}$  does NOT contain a multiple of  $\boldsymbol{x}^{\boldsymbol{u}})$ 

## Bound Summary (Review)



Problem formulation

Degree bounds

Division property

From state-based to bit-based

On bit-based division property

Computational aspects

Perfect division property and degree lower bounds

#### Conclusions

#### Definition

 $x^{\boldsymbol{\mu}} \xrightarrow{F} y^{\boldsymbol{\nu}}$  if  $F(x)^{\boldsymbol{\nu}'}$  contains a multiple of  $x^{\boldsymbol{\mu}}$  in its ANF for some  $\boldsymbol{\nu}' \preceq \boldsymbol{\nu}$ 

Theorem (Udovenko 2021)

The following are equivalent:

1.  $\mathbf{x}^{\boldsymbol{\mu}} \xrightarrow{F} \mathbf{y}^{\boldsymbol{\nu}}$ 

 $2. \ \mathbf{y}^{\neg \mathbf{v}} \xrightarrow{F^{-1}} \mathbf{x}^{\neg \mathbf{u}}$ 

3.  $\mathbf{x}^{\boldsymbol{u}}\mathbf{y}^{\boldsymbol{\neg}\boldsymbol{v}}$  divides a monomial in  $\mathbb{1}_{\Gamma_F}(\mathbf{x},\mathbf{y})$ 

## Graph-indicator formulation

### Proposition (Carlet 2020)

Let 
$$F^{(i)}: \mathbb{F}_{2}^{m_{i-1}} \to \mathbb{F}_{2}^{m_{i}}$$
,  $i \in \{1, ..., r\}$ , and  $F = F^{(r)} \circ ... \circ F^{(1)}$ . Then,  
 $\mathbb{1}_{\Gamma_{F}}(\mathbf{x}, \mathbf{z}) = \sum_{\substack{(\mathbf{y}_{1}, ..., \mathbf{y}_{r-1}) \\ \in \mathbb{F}_{2}^{m_{1}} \times ... \times \mathbb{F}_{2}^{m_{r-1}}}} \mathbb{1}_{\Gamma_{F^{(1)}}}(\mathbf{x}, \mathbf{y}_{1}) \cdot \mathbb{1}_{\Gamma_{F^{(2)}}}(\mathbf{y}_{1}, \mathbf{y}_{2}) \cdot ... \cdot \mathbb{1}_{\Gamma_{F^{(r)}}}(\mathbf{y}_{r-1}, \mathbf{z}).$ 

## Graph-indicator formulation

#### Proposition (Carlet 2020)

Let 
$$F^{(i)} \colon \mathbb{F}_2^{m_{i-1}} \to \mathbb{F}_2^{m_i}$$
,  $i \in \{1, \ldots, r\}$ , and  $F = F^{(r)} \circ \ldots \circ F^{(1)}$ . Then,

$$\mathbb{1}_{\Gamma_F}(\boldsymbol{x},\boldsymbol{z}) = \sum_{\substack{(\boldsymbol{y}_1,...,\boldsymbol{y}_{r-1})\\ \in \mathbb{F}_2^{m_1} \times ... \times \mathbb{F}_2^{m_{r-1}}}} \mathbb{1}_{\Gamma_{F^{(1)}}}(\boldsymbol{x},\boldsymbol{y}_1) \cdot \mathbb{1}_{\Gamma_{F^{(2)}}}(\boldsymbol{y}_1,\boldsymbol{y}_2) \cdot \ldots \cdot \mathbb{1}_{\Gamma_{F^{(r)}}}(\boldsymbol{y}_{r-1},\boldsymbol{z}).$$

#### Theorem

 $\mathbb{1}_{\Gamma_F}(\mathbf{x}, \mathbf{z})$  contains a multiple of  $\mathbf{x}^{\boldsymbol{u}} \mathbf{z}^{\boldsymbol{v}}$  only if there exists a monomial sequence

## Graph-indicator formulation

#### Theorem

 $\mathbb{1}_{\Gamma_F}(x,z)$  contains a multiple of  $x^u z^v$  only if there exists a monomial sequence

if and only there exists a division property trail

$$\mathbf{x}^{\mathbf{u}} \xrightarrow{F^{(1)}} \mathbf{y}_{1}^{t_{1}} \xrightarrow{F^{(2)}} \dots \xrightarrow{F^{(r-1)}} \mathbf{y}_{r-1}^{t_{r-1}} \xrightarrow{F^{(r)}} \mathbf{z}^{\neg \mathbf{v}}$$

Problem formulation

Degree bounds

Division property

From state-based to bit-based

On bit-based division property

Computational aspects

Perfect division property and degree lower bounds

#### Conclusions

- $\exists u, \ldots, v : (x^u \xrightarrow{F^{(1)}} \ldots \xrightarrow{F^{(r)}} z^v)$  ? a search problem
- word-based : exhaustive search / dynamic programming
- bit-based : use SAT solver or MILP optimizer (integer programming)
- $\exists u, \ldots, v : (x^u \xrightarrow{F^{(1)}} \ldots \xrightarrow{F^{(r)}} z^v)$  ? a search problem
- word-based : exhaustive search / dynamic programming
- bit-based : use SAT solver or MILP optimizer (integer programming)

How to encode constraints of round propagation?

- parallel functions propagate separately
- precision loss:  $x^{u} \xrightarrow{F^{(1)}} z^{w} \xrightarrow{F^{(2)}} y^{v}$  may result in worse bounds than  $x^{u} \xrightarrow{F^{(2)} \circ F^{(1)}} y^{v}$

#### Recall: SPN structure



Generic approaches

• Compute set of valid transitions  $D = \{(u, v)\} \subseteq \mathbb{F}_2^{16}, x^u \xrightarrow{S} y^v$ 

Generic approaches

- Compute set of valid transitions  $D = \{(u, v)\} \subseteq \mathbb{F}_2^{16}, x^u \xrightarrow{S} y^v$
- SAT: logic synthesis (Quine-McCluskey, Espresso, etc.)
- MILP: convex hull + greedy optimization

Generic approaches

- Compute set of valid transitions  $D = \{(u, v)\} \subseteq \mathbb{F}_2^{16}, x^u \xrightarrow{S} y^v$
- SAT: logic synthesis (Quine-McCluskey, Espresso, etc.)
- MILP: convex hull + greedy optimization

Better approaches

• valid transitions are monotone  $\Rightarrow 1$  DNF clause per maximal monomial in  $\mathbb{1}_{\Gamma_S} x^{0101} y^{0111} \Rightarrow (\neg u_1 \land \neg u_3 \land v_1)$ 

Generic approaches

- Compute set of valid transitions  $D = \{(u, v)\} \subseteq \mathbb{F}_2^{16}, x^u \xrightarrow{S} y^v$
- SAT: logic synthesis (Quine-McCluskey, Espresso, etc.)
- MILP: convex hull + greedy optimization

Better approaches

- valid transitions are monotone  $\Rightarrow 1$  DNF clause per maximal monomial in  $\mathbb{1}_{\Gamma_S} x^{0101} y^{0111} \Rightarrow (\neg u_1 \land \neg u_3 \land v_1)$
- remove redundant transitions (reduce search space): another monotone bound

Generic approaches

- Compute set of valid transitions  $D = \{(u, v)\} \subseteq \mathbb{F}_2^{16}, x^u \xrightarrow{S} y^v$
- SAT: logic synthesis (Quine-McCluskey, Espresso, etc.)
- MILP: convex hull + greedy optimization

Better approaches

- valid transitions are monotone  $\Rightarrow 1$  DNF clause per maximal monomial in  $\mathbb{1}_{\Gamma_S} x^{0101} y^{0111} \Rightarrow (\neg u_1 \land \neg u_3 \land v_1)$
- remove redundant transitions (reduce search space): another monotone bound
- 1 CNF clause is 1 inequality: (can be improved)  $(u_0 \lor \neg u_1 \lor u_2) \iff u_0 + (1 - u_1) + u_2 \ge 1$  (binary variables)

**Example**:  $S : \mathbb{F}_2^8 \to \mathbb{F}_2^8$  AES S-box:  $\approx 400$  CNF clauses, 27 inequalities

Generic approaches

- Compute set of valid transitions  $D = \{(u, v)\} \subseteq \mathbb{F}_2^{16}, x^u \xrightarrow{S} y^v$
- SAT: logic synthesis (Quine-McCluskey, Espresso, etc.)
- MILP: convex hull + greedy optimization

Better approaches

- valid transitions are monotone  $\Rightarrow 1$  DNF clause per maximal monomial in  $\mathbb{1}_{\Gamma_S} x^{0101} y^{0111} \Rightarrow (\neg u_1 \land \neg u_3 \land v_1)$
- remove redundant transitions (reduce search space): another monotone bound
- 1 CNF clause is 1 inequality: (can be improved)  $(u_0 \lor \neg u_1 \lor u_2) \iff u_0 + (1 - u_1) + u_2 \ge 1$  (binary variables)

Proposition (Zhang and Rijmen 2018)  $x^{u} \xrightarrow{L} y^{v}$  and v is minimal  $\iff$  the submatrix of L indexed by the vectors u, v is invertible

Proposition (Zhang and Rijmen 2018)  $x^{u} \xrightarrow{L} y^{v}$  and v is minimal  $\iff$  the submatrix of L indexed by the vectors u, v is invertible

problem: very difficult to encode

Proposition (Zhang and Rijmen 2018)  $x^{u} \xrightarrow{L} y^{v}$  and v is minimal  $\iff$  the submatrix of L indexed by the vectors u, v is invertible

problem: very difficult to encode

solution 1: model the inverse matrix by variables, encode matrix multiplication

Proposition (Zhang and Rijmen 2018)  $x^{u} \xrightarrow{L} y^{v}$  and v is minimal  $\iff$  the submatrix of L indexed by the vectors u, v is invertible

problem: very difficult to encode

solution 1: model the inverse matrix by variables, encode matrix multiplication solution 2: use a lossy method (decompose L into XORs) and filter solutions (lazy, callback) Problem formulation

Degree bounds

Division property

Perfect division property and degree lower bounds

Definition

Computational aspects

Proving degree lower bounds

#### Conclusions

Problem formulation

Degree bounds

Division property

Perfect division property and degree lower bounds

Definition

Computational aspects

Proving degree lower bounds

Conclusions

# Bound Summary (Review)



# Bound Summary (Review)



#### Definition

 $x^{\boldsymbol{\mu}} \xrightarrow{F} y^{\boldsymbol{\nu}}$  if  $F(x)^{\boldsymbol{\nu}'}$  contains a multiple of  $x^{\boldsymbol{\mu}}$  in its ANF for some  $\boldsymbol{\nu}' \preceq \boldsymbol{\nu}$ 

# Definition $x^{u} \xrightarrow{F} y^{v}$ if $F(x)^{v}$ contains a multiple of $x^{u}$ in its ANF for some $v' \preceq v$

# Definition $x^{u} \xrightarrow{F} y^{v}$ if $F(x)^{v}$ contains $x^{u}$ in its ANF

#### Definition

$$x^{u} \xrightarrow{F} y^{v}$$
 if  $F(x)^{v}$  contains  $x^{u}$  in its ANF

Theorem (Hu, Sun, Wang, and Wang 2020)

A trail

$$\mathbf{x}^{\boldsymbol{u}} \xrightarrow{F^{(r)} \circ F^{(r-1)} \circ \ldots \circ F^{(1)}}_{exact} \mathbf{z}^{\boldsymbol{v}}$$

is valid if and only if the total number of trails

$$\mathbf{x}^{\mathbf{u}} \xrightarrow{F^{(1)}} \mathbf{y}^{\mathbf{w}_{1}}_{(1)} \xrightarrow{F^{(2)}} \cdots \xrightarrow{F^{(r-1)}} \mathbf{y}^{\mathbf{w}_{r-1}}_{(r-1)} \xrightarrow{F^{(s)}} \mathbf{z}^{\mathbf{v}}$$
  
is odd (trail = vector  $(\mathbf{w}_{1}, \dots, \mathbf{w}_{r-1})$ )

Problem formulation

Degree bounds

Division property

Perfect division property and degree lower bounds

Definition

Computational aspects

Proving degree lower bounds

Conclusions

- SAT/MILP models: similar, but have to use generic models (not monotone anymore)
- Have to count trails: feasible only in a few cases (small block size/small number of rounds)
- Have to include keys as variables (all previous techniques were key-agnostic)

Problem formulation

Degree bounds

Division property

Perfect division property and degree lower bounds

Definition

Computational aspects

Proving degree lower bounds

#### Conclusions

Let  $E(\mathbf{x}, \mathbf{k}) : \mathbb{F}_2^n \times \mathbb{F}_2^m \to \mathbb{F}_2^n$  be a keyed permutation. We want to prove absence of *integral distinguishers*:

**Definition (Integral resistance)** For any set of inputs  $\emptyset \subsetneq X \subsetneq \mathbb{F}_2^n$  and any  $\beta \in \mathbb{F}_2^n \setminus \{0\}$ , the function  $\sum_{x \in X} \langle \beta, E(x, k) \rangle$  is strictly key dependent. Let  $E(\mathbf{x}, \mathbf{k}) : \mathbb{F}_2^n \times \mathbb{F}_2^m \to \mathbb{F}_2^n$  be a keyed permutation. We want to prove absence of *integral distinguishers*:

**Definition (Integral resistance)** For any set of inputs  $\emptyset \subsetneq X \subsetneq \mathbb{F}_2^n$  and any  $\beta \in \mathbb{F}_2^n \setminus \{0\}$ , the function  $\sum_{x \in X} \langle \beta, E(x, k) \rangle$  is strictly key dependent.

Theorem (Hebborn, Lambin, Leander, and Todo 2021)

It is sufficient to require that  $\forall \mathbf{u}, \beta \in \mathbb{F}_2^n$  the coefficient of  $\mathbf{x}^{\mathbf{u}}$  in  $\langle \beta, E(\mathbf{x}, \mathbf{k}) \rangle$  is a non-constant function of the key, and all these functions are linearly independent  $(\mathbf{u} \neq (1, ..., 1), \beta \neq (0, ..., 0))$ 

# Proving degree lower bounds (2)

Definition (Integral resistance matrix: Hebborn, Lambin, Leander, and Todo 2021)

Let  $\lambda_{i,j;\mathbf{v}}$  denote the coefficient of  $\mathbf{x}^{\neg e_j} \mathbf{k}^{\mathbf{v}}$  in  $E_i(\mathbf{x}, \mathbf{k})$ . For some vectors  $\mathbf{v}_1, \ldots, \mathbf{v}_s$  let

$$\mathcal{I} = \begin{pmatrix} \lambda_{1,1;\mathbf{v}_{1}} & \lambda_{1,1;\mathbf{v}_{2}} & \dots & \lambda_{1,1;\mathbf{v}_{s}} \\ \lambda_{2,1;\mathbf{v}_{1}} & \lambda_{2,1;\mathbf{v}_{2}} & \dots & \lambda_{2,1;\mathbf{v}_{s}} \\ \vdots & \vdots & & \\ \lambda_{n,1;\mathbf{v}_{1}} & \lambda_{n,1;\mathbf{v}_{2}} & \dots & \lambda_{n,1;\mathbf{v}_{s}} \\ \lambda_{1,2;\mathbf{v}_{1}} & \lambda_{1,2;\mathbf{v}_{2}} & \dots & \lambda_{1,2;\mathbf{v}_{s}} \\ \lambda_{2,2;\mathbf{v}_{1}} & \lambda_{1,2;\mathbf{v}_{2}} & \dots & \lambda_{2,2;\mathbf{v}_{s}} \\ \vdots & & \\ \lambda_{i,j;\mathbf{v}_{1}} & \lambda_{i,j;\mathbf{v}_{2}} & \dots & \lambda_{i,j;\mathbf{v}_{s}} \\ \vdots & & \\ \lambda_{n-1,n;\mathbf{v}_{1}} & \lambda_{n-1,n;\mathbf{v}_{2}} & \dots & \lambda_{n-1,n;\mathbf{v}_{s}} \end{pmatrix} \in \mathbb{F}_{2}^{n^{2} \times s}$$

Theorem (Hebborn, Lambin, Leander, and Todo 2021)

If there exists an integral resistance matrix I of full rank n<sup>2</sup> for  $E(\mathbf{x}, \mathbf{k})$ , then  $E'(\mathbf{x}, \mathbf{k} || \mathbf{k'}) = E(\mathbf{x} + \mathbf{k'}, \mathbf{k}) : \mathbb{F}_2^n \times \mathbb{F}_2^m' \times \mathbb{F}_2^m$  is integral resistant. Theorem (Hebborn, Lambin, Leander, and Todo 2021)

If there exists an integral resistance matrix I of full rank  $n^2$  for  $E(\mathbf{x}, \mathbf{k})$ , then  $E'(\mathbf{x}, \mathbf{k} || \mathbf{k'}) = E(\mathbf{x} + \mathbf{k'}, \mathbf{k}) : \mathbb{F}_2^n \times \mathbb{F}_2^m' \times \mathbb{F}_2^m$  is integral resistant.

Extra whitening key k': translate key-dependence from maximal monomials to lower-degree monomials

Example:  $x_1x_2x_3$  becomes  $(x_1 + \mathbf{k'}_1)(x_2 + \mathbf{k'}_2)(x_3 + \mathbf{k'}_3)$  with all 2<sup>3</sup> functions (from fixing x) being linearly independent

Theorem (Hebborn, Lambin, Leander, and Todo 2021)

If there exists an integral resistance matrix I of full rank  $n^2$  for  $E(\mathbf{x}, \mathbf{k})$ , then  $E'(\mathbf{x}, \mathbf{k} || \mathbf{k'}) = E(\mathbf{x} + \mathbf{k'}, \mathbf{k}) : \mathbb{F}_2^n \times \mathbb{F}_2^m' \times \mathbb{F}_2^m$  is integral resistant.

Extra whitening key k': translate key-dependence from maximal monomials to lower-degree monomials

Example:  $x_1x_2x_3$  becomes  $(x_1 + \mathbf{k'}_1)(x_2 + \mathbf{k'}_2)(x_3 + \mathbf{k'}_3)$  with all 2<sup>3</sup> functions (from fixing x) being linearly independent

Cost:  $\geq n^4$  calls to perfect division property (parity counting)

Optimization: carefully choose key monomials (the  $\mathbf{v}_i$ ) to aid computations

Problem formulation

Degree bounds

Division property

Perfect division property and degree lower bounds

Conclusions

Let  $S : \mathbb{F}_2^n \to \mathbb{F}_2^n$  for a small n, e.g. n = 4, 8

Let  $S : \mathbb{F}_2^n \to \mathbb{F}_2^n$  for a small *n*, e.g. n = 4, 8 $\mathbb{1}_{\Gamma_S}$  typically has few maximal monomials  $x^u y^v$  Let  $S : \mathbb{F}_2^n \to \mathbb{F}_2^n$  for a small *n*, e.g. n = 4, 8 $\mathbb{1}_{\Gamma_S}$  typically has few maximal monomials  $\mathbf{x}^{\boldsymbol{u}} \mathbf{y}^{\boldsymbol{v}}$ For linear maps  $\boldsymbol{A}, \boldsymbol{B}$ , maximal monomials of  $\mathbb{1}_{\Gamma_{\boldsymbol{B} \circ \boldsymbol{S} \circ \boldsymbol{A}}}$  can not be computed from  $\operatorname{MaxSet}(\mathbb{1}_{\Gamma_S})$  (in general) Let  $S : \mathbb{F}_2^n \to \mathbb{F}_2^n$  for a small *n*, e.g. n = 4, 8 $\mathbb{1}_{\Gamma_S}$  typically has few maximal monomials  $\mathbf{x}^{\boldsymbol{u}} \mathbf{y}^{\boldsymbol{v}}$ For linear maps A, B, maximal monomials of  $\mathbb{1}_{\Gamma_{B \circ S \circ A}}$  can not be computed from  $\operatorname{MaxSet}(\mathbb{1}_{\Gamma_S})$  (in general)

Question: how to represent all such sets compactly?

#### Conclusions

#### Conclusions

- division property is a powerful technique for degree/monomial bounds
- information/precision/computations trade-off
- links to theory (graph indicators)

#### Conclusions

#### Conclusions

- division property is a powerful technique for degree/monomial bounds
- information/precision/computations trade-off
- links to theory (graph indicators)

# Open problems

- represent  $\operatorname{MaxSet}(\mathbb{1}_{\Gamma_{B \circ S \circ A}})$  for all linear A, B compactly
- computational hardness (conventional division property)
- better handling of large linear maps
- generalization to non-binary fields
# Conclusions

#### Conclusions

- division property is a powerful technique for degree/monomial bounds
- information/precision/computations trade-off
- links to theory (graph indicators)

# Open problems

- represent  $\operatorname{MaxSet}(\mathbb{1}_{\Gamma_{B \circ S \circ A}})$  for all linear A, B compactly
- computational hardness (conventional division property)
- better handling of large linear maps
- generalization to non-binary fields

C.f. survey "Mathematical aspects of division property" (CCDS 2023)

# References i

- Boura, Christina and Anne Canteaut (2013). "On the Influence of the Algebraic Degree of F<sup>-1</sup> on the Algebraic Degree of G ∘ F". In: *IEEE Transactions on Information Theory* 59.1, pp. 691–702.
- Boura, Christina, Anne Canteaut, and Christophe De Cannière (Feb. 2011).
  "Higher-Order Differential Properties of Keccak and Luffa". In: FSE 2011. Ed. by Antoine Joux. Vol. 6733. LNCS. Springer, Heidelberg, pp. 252–269. doi: 10.1007/978-3-642-21702-9\_15.
- Carlet, Claude (2020). "Graph indicators of vectorial functions and bounds on the algebraic degree of composite functions". In: IEEE Transactions on Information Theory, pp. 1–1. doi: 10.1109/TIT.2020.3017494.

# References ii

- Hebborn, Phil, Baptiste Lambin, Gregor Leander, and Yosuke Todo (Dec. 2021).
  "Strong and Tight Security Guarantees Against Integral Distinguishers". In: ASIACRYPT 2021, Part I. Ed. by Mehdi Tibouchi and Huaxiong Wang. Vol. 13090.
   LNCS. Springer, Heidelberg, pp. 362–391. doi: 10.1007/978-3-030-92062-3\_13.
- Hu, Kai, Siwei Sun, Meiqin Wang, and Qingju Wang (Dec. 2020). "An Algebraic Formulation of the Division Property: Revisiting Degree Evaluations, Cube Attacks, and Key-Independent Sums". In: ASIACRYPT 2020, Part I. Ed. by Shiho Moriai and Huaxiong Wang. Vol. 12491. LNCS. Springer, Heidelberg, pp. 446–476. doi: 10.1007/978-3-030-64837-4\_15.

- Udovenko, Aleksei (Dec. 2021). "Convexity of Division Property Transitions: Theory, Algorithms and Compact Models". In: ASIACRYPT 2021, Part I. Ed. by Mehdi Tibouchi and Huaxiong Wang. Vol. 13090. LNCS. Springer, Heidelberg, pp. 332–361. doi: 10.1007/978-3-030-92062-3\_12.
- Zhang, Wenying and Vincent Rijmen (Aug. 2018). "Division Cryptanalysis of Block Ciphers with a Binary Diffusion Layer". In: IET Information Security 13.2, pp. 87–95. issn: 1751-8717.