On Division Property and Degree Bounds

Aleksei Udovenko
based on joint work with Gregor Leander and Phil Hebborn
BFA 2023, September $4^{\text {th }}$
SnT, University of Luxembourg

Plan

Problem formulation

Degree bounds

Division property

Perfect division property and degree lower bounds

Conclusions

Algebraic Normal Form (ANF)

ANF:

$$
\begin{aligned}
& f: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2} \\
& f(x)=\sum_{\boldsymbol{u} \in \mathbb{F}_{2}^{n}} \lambda_{\boldsymbol{u}} \prod_{1 \leq j \leq n} x_{j}^{u_{j}} \quad \lambda_{\boldsymbol{u}} \in \mathbb{F}_{2}
\end{aligned}
$$

Algebraic Normal Form (ANF)

ANF:

$$
\begin{aligned}
& f: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2} \\
& f(\boldsymbol{x})=\sum_{\boldsymbol{u} \in \mathbb{F}_{2}^{n}} \lambda_{\boldsymbol{u}} \prod_{1 \leq j \leq n} x_{j}^{u_{j}}=\sum_{\boldsymbol{u} \in \mathbb{F}_{2}^{n}} \lambda_{\boldsymbol{u}} x^{\boldsymbol{u}} \quad \lambda_{\boldsymbol{u}} \in \mathbb{F}_{2}
\end{aligned}
$$

Algebraic Normal Form (ANF)

ANF:

$$
\begin{aligned}
& f: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2} \\
& f(\boldsymbol{x})=\sum_{\boldsymbol{u} \in \mathbb{F}_{2}^{n}} \lambda_{\boldsymbol{u}} \prod_{1 \leq j \leq n} x_{j}^{u_{j}}=\sum_{\boldsymbol{u} \in \mathbb{F}_{2}^{n}} \lambda_{\boldsymbol{u}} x^{\boldsymbol{u}} \quad \lambda_{\boldsymbol{u}} \in \mathbb{F}_{2}
\end{aligned}
$$

Partial order: $u \preceq v \quad \Leftrightarrow \quad \forall i u_{i} \leq v_{i}$

Algebraic Normal Form (ANF)

ANF:

$$
\begin{aligned}
& f: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2} \\
& f(\boldsymbol{x})=\sum_{\boldsymbol{u} \in \mathbb{F}_{2}^{n}} \lambda_{\boldsymbol{u}} \prod_{1 \leq j \leq n} x_{j}^{u_{j}}=\sum_{\boldsymbol{u} \in \mathbb{F}_{2}^{n}} \lambda_{\boldsymbol{u}} x^{\boldsymbol{u}} \quad \lambda_{\boldsymbol{u}} \in \mathbb{F}_{2}
\end{aligned}
$$

Partial order: $\quad u \preceq v \quad \Leftrightarrow \quad \forall i u_{i} \leq v_{i} \Leftrightarrow x^{u} \mid x^{v}$

Algebraic Normal Form (ANF)

ANF:

$$
\begin{aligned}
& f: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2} \\
& f(\boldsymbol{x})=\sum_{\boldsymbol{u} \in \mathbb{F}_{2}^{n}} \lambda_{\boldsymbol{u}} \prod_{1 \leq j \leq n} x_{j}^{u_{j}}=\sum_{\boldsymbol{u} \in \mathbb{F}_{2}^{n}} \lambda_{\boldsymbol{u}} x^{u} \quad \lambda_{\boldsymbol{u}} \in \mathbb{F}_{2}
\end{aligned}
$$

Partial order: $\mathbf{u} \preceq \boldsymbol{v} \quad \Leftrightarrow \quad \forall i u_{i} \leq v_{i} \Leftrightarrow \boldsymbol{x}^{u} \mid \mathbf{x}^{v} \quad \Leftrightarrow \quad v^{u}=1$

Algebraic Normal Form (ANF)

ANF:

$$
\begin{aligned}
& f: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2} \\
& f(x)=\sum_{\boldsymbol{u} \in \mathbb{F}_{2}^{n}} \lambda_{\boldsymbol{u}} \prod_{1 \leq j \leq n} x_{j}^{u_{j}}=\sum_{\boldsymbol{u} \in \mathbb{F}_{2}^{n}} \lambda_{\boldsymbol{u}} x^{\boldsymbol{u}} \quad \lambda_{\boldsymbol{u}} \in \mathbb{F}_{2}
\end{aligned}
$$

Partial order: $\mathbf{u} \preceq \boldsymbol{v} \quad \Leftrightarrow \quad \forall i u_{i} \leq v_{i} \Leftrightarrow \boldsymbol{x}^{u} \mid \mathbf{x}^{v} \quad \Leftrightarrow \quad v^{u}=1$

Inversion:

$$
\lambda_{\boldsymbol{u}}=\sum_{\boldsymbol{x} \preceq \boldsymbol{u}} f(\boldsymbol{x})
$$

Algebraic Normal Form (ANF)

ANF:

$$
\begin{aligned}
& f: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2} \\
& f(\boldsymbol{x})=\sum_{\boldsymbol{u} \in \mathbb{F}_{2}^{n}} \lambda_{\boldsymbol{u}} \prod_{1 \leq j \leq n} x_{j}^{u_{j}}=\sum_{\boldsymbol{u} \in \mathbb{F}_{2}^{n}} \lambda_{\boldsymbol{u}} x^{\boldsymbol{u}} \quad \lambda_{\boldsymbol{u}} \in \mathbb{F}_{2}
\end{aligned}
$$

Partial order: $\boldsymbol{u} \preceq \boldsymbol{v} \Leftrightarrow \forall i u_{i} \leq v_{i} \Leftrightarrow \boldsymbol{x}^{\boldsymbol{u}} \mid \mathbf{x}^{\boldsymbol{v}} \quad \Leftrightarrow \quad \boldsymbol{v}^{\mathbf{u}}=1$

Inversion:

$$
\lambda_{u}=\sum_{x \leq u} f(x) \quad f(x)=\sum_{u \leq x} \lambda_{u}
$$

Problem (Degree)

ANF:

$$
f(\boldsymbol{x})=\sum_{\boldsymbol{u} \in \mathbb{F}_{2}^{n}} \lambda_{\boldsymbol{u}} \boldsymbol{x}^{\boldsymbol{u}}
$$

Algebraic degree: $\operatorname{deg} f=\max _{\boldsymbol{u}: \lambda_{u}=1} \mathrm{wt}(\boldsymbol{u})$

Problem (Degree)

ANF: $\quad f(x)=\sum_{\boldsymbol{u} \in \mathbb{F}_{2}^{n}} \lambda_{\boldsymbol{u}} x^{\boldsymbol{u}}$
Algebraic degree: $\operatorname{deg} f=\max _{\boldsymbol{u}: \lambda_{u}=1} \mathrm{wt}(\boldsymbol{u})$
$F: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{m} \quad \operatorname{deg} F=\max _{i} \operatorname{deg} F_{i} \quad$ (min also makes sense)

Problem (Degree)

ANF:

$$
f(\boldsymbol{x})=\sum_{\boldsymbol{u} \in \mathbb{F}_{2}^{n}} \lambda_{\boldsymbol{u}} x^{\boldsymbol{u}}
$$

Algebraic degree: $\operatorname{deg} f=\max _{\boldsymbol{u}: \lambda_{u}=1} \mathrm{wt}(\boldsymbol{u})$
$F: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{m} \quad \operatorname{deg} F=\max _{i} \operatorname{deg} F_{i} \quad$ (min also makes sense)

Problem

Given $F: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{m}$ (in some form), determine or bound its algebraic degree Typically: $F=G^{(r)} \circ G^{(r-1)} \circ \ldots \circ G^{(1)}$ with explicit $G^{(i)}$

Finer Problem (Monomials)

Example

Let $\quad F(\boldsymbol{x}, \boldsymbol{y})=G(\boldsymbol{x})+H(\boldsymbol{y}): \mathbb{F}_{2}^{2 n} \rightarrow \mathbb{F}_{2}^{n} \quad$ with $\operatorname{deg} G=\operatorname{deg} H=n-1$. Then:

- $\operatorname{deg} F=n-1$

Finer Problem (Monomials)

Example

Let $\quad F(\boldsymbol{x}, \boldsymbol{y})=G(\boldsymbol{x})+H(\boldsymbol{y}): \mathbb{F}_{2}^{2 n} \rightarrow \mathbb{F}_{2}^{n} \quad$ with $\operatorname{deg} G=\operatorname{deg} H=n-1$. Then:

- $\operatorname{deg} F=n-1$
- F does not contain any of the monomials $x_{i} y_{j}$ for all pairs (i, j)

Finer Problem (Monomials)

Example

Let $\quad F(\boldsymbol{x}, \boldsymbol{y})=G(\boldsymbol{x})+H(\boldsymbol{y}): \mathbb{F}_{2}^{2 n} \rightarrow \mathbb{F}_{2}^{n} \quad$ with $\operatorname{deg} G=\operatorname{deg} H=n-1$. Then:

- $\operatorname{deg} F=n-1$
- F does not contain any of the monomials $x_{i} y_{j}$ for all pairs (i, j)
- in fact, F does not contain any multiple of those

Finer Problem (Monomials)

Example

Let $\quad F(\boldsymbol{x}, \boldsymbol{y})=G(\boldsymbol{x})+H(\boldsymbol{y}): \mathbb{F}_{2}^{2 n} \rightarrow \mathbb{F}_{2}^{n} \quad$ with $\operatorname{deg} G=\operatorname{deg} H=n-1$. Then:

- $\operatorname{deg} F=n-1$
- F does not contain any of the monomials $x_{i} y_{j}$ for all pairs (i, j)
- in fact, F does not contain any multiple of those
- $\Rightarrow \quad F(a, b)+F(a+\delta, b)+F\left(a, b+\delta^{\prime}\right)+F\left(a+\delta, b+\delta^{\prime}\right)=0 \quad \forall a, b, \delta, \delta^{\prime}$

Finer Problem (Monomials)

Example

Let $\quad F(\boldsymbol{x}, \boldsymbol{y})=G(\boldsymbol{x})+H(\boldsymbol{y}): \mathbb{F}_{2}^{2 n} \rightarrow \mathbb{F}_{2}^{n} \quad$ with $\operatorname{deg} G=\operatorname{deg} H=n-1$. Then:

- $\operatorname{deg} F=n-1$
- F does not contain any of the monomials $x_{i} y_{j}$ for all pairs (i, j)
- in fact, F does not contain any multiple of those
- $\Rightarrow \quad F(a, b)+F(a+\delta, b)+F\left(a, b+\delta^{\prime}\right)+F\left(a+\delta, b+\delta^{\prime}\right)=0 \quad \forall a, b, \delta, \delta^{\prime}$

Applications: integral cryptanalysis, cube attacks
Important: ciphers are very structured, we want to catch any such deficiencies

Iterated Structures

Iterated Structures

Iterated Structures

Plan

Problem formulation

Degree bounds
Classic bounds
Bound unification and comparison
Bound summary

Division property

Perfect division property and degree lower bounds

Plan

Problem formulation

Degree bounds

Classic bounds

Bound unification and comparison
Bound summary

Division property

Perfect division property and degree lower bounds

Conclusions

Naive bound

$$
\begin{aligned}
& \text { Proposition (Naive bound) } \\
& \text { Let } f=g \circ H \text {. Then, } \\
& \qquad \operatorname{deg} f \leq \operatorname{deg} g \times \operatorname{deg} H
\end{aligned}
$$

Naive bound

Proposition (Naive bound)

Let $f=g \circ H$. Then,

$$
\operatorname{deg} f \leq \operatorname{deg} g \times \operatorname{deg} H
$$

Example

Say $g(\boldsymbol{x})=x_{1} x_{2} x_{3}$. Then,

$$
f(\boldsymbol{x})=g(H(\boldsymbol{x}))=\underbrace{\underbrace{H_{1}(x)}_{\leq \operatorname{deg} H} \cdot \underbrace{H_{2}(x)}_{\leq \operatorname{deg} H} \cdot \underbrace{H_{3}(x)}_{\leq \operatorname{deg} H}}_{\operatorname{deg} g \text { times }}
$$

Naive bound

Proposition (Naive bound)

Let $f=g \circ H$. Then,

$$
\operatorname{deg} f \leq \operatorname{deg} g \times \operatorname{deg} H
$$

Example

Say $g(\boldsymbol{x})=x_{1} x_{2} x_{3}$. Then,

$$
f(\boldsymbol{x})=g(H(\boldsymbol{x}))=\underbrace{\underbrace{H_{1}(x)}_{\leq \operatorname{deg} H} \cdot \underbrace{H_{2}(x)}_{\leq \operatorname{deg} H} \cdot \underbrace{H_{3}(x)}_{\leq \operatorname{deg} H}}_{\operatorname{deg} g \text { times }}
$$

Important idea: g a monomial function covers a lot of cases

Boura-Canteaut bound (Boura and Canteaut 2013)

Theorem (Boura and Canteaut 2013; Boura, Canteaut, and De Cannière 2011) Let $f=g \circ H$ with H a bijection. Then,

$$
\operatorname{deg} f \leq n-\left\lceil\frac{n-\operatorname{deg} g}{\operatorname{deg} H^{-1}}\right\rceil
$$

Boura-Canteaut bound (Boura and Canteaut 2013)

Theorem (Boura and Canteaut 2013; Boura, Canteaut, and De Cannière 2011) Let $f=g \circ H$ with H a bijection. Then,

$$
\operatorname{deg} f \leq n-\left\lceil\frac{n-\operatorname{deg} g}{\operatorname{deg} H^{-1}}\right\rceil
$$

Degree deficit can not drop by a factor more than $\operatorname{deg} \mathrm{H}^{-1}$ when pre-composing H

Boura-Canteaut bound - example (SPN)

$$
\begin{aligned}
& H: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{n}(\text { one SPN round }) \\
& S: \mathbb{F}_{2}^{m} \rightarrow \mathbb{F}_{2}^{m}(\text { an } S \text {-box }) \\
& \operatorname{deg} H=\operatorname{deg} S \leq m-1 \\
& \operatorname{deg} H^{-1}=\operatorname{deg} S^{-1} \leq m-1
\end{aligned}
$$

Carlet bound

Theorem (Carlet 2020)

Let $f=g \circ H$, where $H: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{m}$. Then,

$$
\operatorname{deg} f \leq \operatorname{deg} g+\operatorname{deg} \mathbb{1}_{\Gamma_{H}}-m
$$

where

- $\Gamma_{H}=\left\{(\boldsymbol{x}, H(x)) \mid \boldsymbol{x} \in \mathbb{F}_{2}^{n}\right\}$
- $\mathbb{1}_{\Gamma_{H}}: \mathbb{F}_{2}^{n+m} \rightarrow \mathbb{F}_{2}:(\boldsymbol{x}, \boldsymbol{y}) \mapsto \begin{cases}1 & \text { if } H(\boldsymbol{x})=\boldsymbol{y}, \\ 0 & \text { otherwise }\end{cases}$

Plan

Problem formulation

Degree bounds
Classic bounds
Bound unification and comparison
Bound summary

Division property

Perfect division property and degree lower bounds

Conclusions

Bound unification 1

For $F: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{m}$ define (Boura and Canteaut 2013)

$$
\delta_{k}(F)=\max _{\alpha \in \mathbb{F}_{2}^{2}, w t \alpha \leq k} \operatorname{deg} F^{\alpha}
$$

Bound unification 1

For $F: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{m}$ define (Boura and Canteaut 2013)

$$
\delta_{k}(F)=\max _{\alpha \in \mathbb{F}_{2}^{m}, \text { wt } \alpha \leq k} \operatorname{deg} F^{\alpha}=\max _{g: \mathbb{F}_{2}^{m} \rightarrow \mathbb{F}_{2}, \operatorname{deg} g \leq k} \operatorname{deg}(g \circ F)
$$

Bound unification 1

For $F: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{m}$ define (Boura and Canteaut 2013)

$$
\delta_{k}(F)=\max _{\alpha \in \mathbb{F}_{2}^{m}, \text { wt } \alpha \leq k} \operatorname{deg} F^{\alpha}=\max _{g: \mathbb{F}_{2}^{m} \rightarrow \mathbb{F}_{2}, \operatorname{deg} g \leq k} \operatorname{deg}(g \circ F)
$$

Essentially a "precomputed" answer to the problem (example):

k	1	2	3	4	5	6	7	8
δ_{k}	3	4	6	7	7	7	7	8

Bound unification 1

For $F: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{m}$ define (Boura and Canteaut 2013)

$$
\delta_{k}(F)=\max _{\alpha \in \mathbb{F}_{2}^{n}, \text { wt } \alpha \leq k} \operatorname{deg} F^{\alpha}=\max _{g: \mathbb{F}_{2}^{m} \rightarrow \mathbb{F}_{2}, \operatorname{deg} g \leq k} \operatorname{deg}(g \circ F)
$$

Essentially a "precomputed" answer to the problem (example):

k	1	2	3	4	5	6	7	8
δ_{k}	3	4	6	7	7	7	7	8

Question: how does it relate to the previous bounds?

Bound unification 2

Theorem (Boura and Canteaut 2013)
$\delta_{\ell}\left(F^{-1}\right)<n-k \Leftrightarrow \delta_{k}(F)<n-\ell$

Bound unification 2

Theorem (Boura and Canteaut 2013)

$\delta_{\ell}\left(F^{-1}\right)<n-k \Leftrightarrow \delta_{k}(F)<n-\ell$
\Rightarrow knowing $d=\operatorname{deg} F^{-1}=\delta_{1}\left(F^{-1}\right)$ yields $\delta_{n-d-1}(F)<n-1$

Bound unification 2

Theorem (Boura and Canteaut 2013)

$\delta_{\ell}\left(F^{-1}\right)<n-k \Leftrightarrow \delta_{k}(F)<n-\ell$
\Rightarrow knowing $d=\operatorname{deg} F^{-1}=\delta_{1}\left(F^{-1}\right)$ yields $\delta_{n-d-1}(F)<n-1$
\Rightarrow knowing $\delta(F)$ is equivalent to knowing $\delta\left(F^{-1}\right)$

Bound unification 2

Theorem (Boura and Canteaut 2013)

$\delta_{\ell}\left(F^{-1}\right)<n-k \Leftrightarrow \delta_{k}(F)<n-\ell$
\Rightarrow knowing $d=\operatorname{deg} F^{-1}=\delta_{1}\left(F^{-1}\right)$ yields $\delta_{n-d-1}(F)<n-1$
\Rightarrow knowing $\delta(F)$ is equivalent to knowing $\delta\left(F^{-1}\right)$

Theorem (Udovenko 2021)

The following are equivalent:

- $\delta_{v}(F) \geq u$
- \exists monomial $\boldsymbol{x}^{\alpha} \boldsymbol{y}^{\beta}$ in $\mathbb{1}_{\Gamma_{\digamma}}(\boldsymbol{x}, \boldsymbol{y})$ with
- $\operatorname{deg}_{x} x^{\alpha} y^{\beta}=w t \alpha \geq u$, and
- $\operatorname{deg}_{y} \boldsymbol{x}^{\alpha} \boldsymbol{y}^{\beta}=\mathrm{wt} \beta \geq m-v$

Bound unification 2

Theorem (Boura and Canteaut 2013)

$\delta_{\ell}\left(F^{-1}\right)<n-k \Leftrightarrow \delta_{k}(F)<n-\ell$
\Rightarrow knowing $d=\operatorname{deg} F^{-1}=\delta_{1}\left(F^{-1}\right)$ yields $\delta_{n-d-1}(F)<n-1$
\Rightarrow knowing $\delta(F)$ is equivalent to knowing $\delta\left(F^{-1}\right)$

Theorem (Udovenko 2021)

The following are equivalent:

- $\delta_{v}(F)=u$ with minimal such v (i.e., $\delta_{v-1}(F)<u$)
- \exists maximal monomial $\boldsymbol{x}^{\alpha} \boldsymbol{y}^{\beta}$ in $\mathbb{1}_{\Gamma_{F}}(\boldsymbol{x}, \boldsymbol{y})$ with wt $\alpha=u$, wt $\beta=m-v$

Bound comparison

$$
\begin{aligned}
& F:\left(\mathbb{F}_{2^{7}}\right)^{2} \rightarrow\left(\mathbb{F}_{2^{7}}\right)^{2}:\left(x_{L}, x_{R}\right) \mapsto\left(x_{L}^{3}, x_{R}^{1 / 3}\right) \\
& \operatorname{deg} F=\operatorname{deg} F^{-1}=4, \operatorname{deg} \mathbb{1}_{\Gamma_{F}}=20
\end{aligned}
$$

Bound comparison

$$
\begin{aligned}
& F:\left(\mathbb{F}_{2^{7}}\right)^{2} \rightarrow\left(\mathbb{F}_{2^{7}}\right)^{2}:\left(x_{L}, x_{R}\right) \mapsto\left(x_{L}^{3}, x_{R}^{1 / 3}\right) \\
& \operatorname{deg} F=\operatorname{deg} F^{-1}=4, \operatorname{deg} \mathbb{1}_{\Gamma_{F}}=20
\end{aligned}
$$

- naive bound
- Boura-Canteaut bound ($\operatorname{deg} F^{-1}$)
- Carlet bound $\left(\operatorname{deg} \mathbb{1}_{\Gamma_{F}}\right)$
- maximal degree pairs of $\mathbb{1}_{\Gamma_{F}}$ / extremal $\delta(F)$ values

Plan

Problem formulation

Degree bounds
Classic bounds
Bound unification and comparison
Bound summary

Division property

Perfect division property and degree lower bounds

Bound summary

Plan

Problem formulation

Degree bounds

Division property
From state-based to bit-based
On bit-based division property
Computational aspects

Perfect division property and degree lower bounds

Plan

Problem formulation

Degree bounds

Division property
From state-based to bit-based
On bit-based division property
Computational aspects

Perfect division property and degree lower bounds

Multi-round usage of $\delta(F)$

Multi-round usage of $\delta(F)$

$$
\begin{aligned}
& d_{0}=\delta_{d_{1}}\left(F^{(1)}\right) \quad d_{1}=\delta_{d_{2}}\left(F^{(2)}\right) \quad d_{r-2}=\delta_{d_{r-1}}\left(F^{(r-1)}\right) d_{r-1}=\delta_{1}\left(F^{(r)}\right) \quad d_{r}=1
\end{aligned}
$$

Proposition

$$
\operatorname{deg} F^{(r)} \circ F^{(r-1)} \circ \ldots \circ F^{(2)} \circ F^{(1)} \leq d_{0}
$$

Multi-round usage of $\delta(F)$

Proposition

$\operatorname{deg} F^{(r)} \circ F^{(r-1)} \circ \ldots \circ F^{(2)} \circ F^{(1)} \leq d_{0}$

Proposition

$\delta_{\ell}\left(F^{(r)} \circ F^{(r-1)} \circ \ldots \circ F^{(2)} \circ F^{(1)}\right) \leq d_{0}$ by starting from $d_{n}=\ell$

Multi-round usage of $\delta(F)$

Proposition

$\operatorname{deg} F^{(r)} \circ F^{(r-1)} \circ \ldots \circ F^{(2)} \circ F^{(1)} \leq d_{0}$

Proposition

$\delta_{\ell}\left(F^{(r)} \circ F^{(r-1)} \circ \ldots \circ F^{(2)} \circ F^{(1)}\right) \leq d_{0}$ by starting from $d_{n}=\ell$
Going from the left requires initial guess on the degree $\left(d_{0}\right)$

Word-based division property

Definition

Let $F:\left(\mathbb{F}_{2}^{n}\right)^{2} \rightarrow\left(\mathbb{F}_{2}^{n}\right)^{2}:\left(\boldsymbol{x}_{L}, \boldsymbol{x}_{R}\right) \mapsto\left(F_{L}\left(\boldsymbol{x}_{L}, \boldsymbol{x}_{R}\right), F_{R}\left(\boldsymbol{x}_{L}, \boldsymbol{x}_{R}\right)\right)$.

- take a product of at most k_{L} outputs of F_{L} and at most k_{R} outputs of F_{R}

Word-based division property

Definition

Let $F:\left(\mathbb{F}_{2}^{n}\right)^{2} \rightarrow\left(\mathbb{F}_{2}^{n}\right)^{2}:\left(\boldsymbol{x}_{L}, \boldsymbol{x}_{R}\right) \mapsto\left(F_{L}\left(\boldsymbol{x}_{L}, \boldsymbol{x}_{R}\right), F_{R}\left(\boldsymbol{x}_{L}, \boldsymbol{x}_{R}\right)\right)$.

- take a product of at most k_{L} outputs of F_{L} and at most k_{R} outputs of F_{R}
- what are the maximal degree pairs in the two input parts that can be achieved?

Word-based division property

Definition

Let $F:\left(\mathbb{F}_{2}^{n}\right)^{2} \rightarrow\left(\mathbb{F}_{2}^{n}\right)^{2}:\left(\boldsymbol{x}_{L}, \boldsymbol{x}_{R}\right) \mapsto\left(F_{L}\left(\boldsymbol{x}_{L}, \boldsymbol{x}_{R}\right), F_{R}\left(\boldsymbol{x}_{L}, \boldsymbol{x}_{R}\right)\right)$.

- take a product of at most k_{L} outputs of F_{L} and at most k_{R} outputs of F_{R}
- what are the maximal degree pairs in the two input parts that can be achieved?

$$
\begin{aligned}
\delta_{k_{L}, k_{R}}(F)=\operatorname{MaxSet}\{ & \left(\text { wt } \alpha_{1}, \text { wt } \alpha_{2}\right) \\
\mid & \left(\beta_{L}, \beta_{R}\right) \in\left(\mathbb{F}_{2}^{n}\right)^{2}, \text { wt } \beta_{L} \leq k_{L}, \text { wt } \beta_{R} \leq k_{R}, \\
& \left.F\left(x_{L}, x_{R}\right)^{\beta_{L} \| \beta_{R}} \text { contains } x_{L}^{\alpha_{L}} x_{R}^{\alpha_{R}}\right\}
\end{aligned}
$$

Word-based division property - Trails

$$
d_{0}=\delta_{d_{1}}\left(F^{(1)}\right) d_{1}=\delta_{d_{2}}\left(F^{(2)}\right) \quad d_{r-2}=\delta_{d_{r-1}}\left(F^{(r-1)}\right) \text { d } d_{r-1}=\delta_{d_{r}}\left(F^{(r)}\right) \quad d_{r}=\ell
$$

Word-based division property - Trails

$$
\begin{gathered}
\in\{0, \ldots, n\}^{2} \quad \in\{0, \ldots, n\}^{2} \quad \in\{0, \ldots, n\}^{2} \quad \in\{0, \ldots, n\}^{2} \quad \in\{0, \ldots, n\}^{2} \\
d_{0}=\delta_{d_{1}}\left(F^{(1)}\right) d_{1}=\delta_{d_{2}}\left(F^{(2)}\right) \\
d_{r-2}=\delta_{d_{r-1}}\left(F^{(r-1)}\right) \\
\xrightarrow[\boldsymbol{x}_{L}]{ } \\
\boldsymbol{x}_{R}
\end{gathered}
$$

Word-based division property - Trails

$$
\begin{aligned}
& \in\{0, \ldots, n\}^{2} \\
& \in\{0, \ldots, n\}^{2} \in\{0, \ldots, n\}^{2} \\
& \in\{0, \ldots, n\}^{2} \\
& \in\{0, \ldots, n\}^{2} \\
& d_{0} \in \delta_{d_{1}}\left(F^{(1)}\right) d_{1} \in \delta_{d_{2}}\left(F^{(2)}\right) \quad d_{r-1} \in \delta_{1}\left(F^{(r)}\right) \quad d_{r}=(0,1)
\end{aligned}
$$

Word-based division property - Trails

Proposition (analogy to 1D)

$d_{0}=\left(k_{L}, k_{R}\right)$ is a maximal reachable pair (from $d_{r}=(0,1)$)
$\Rightarrow\left(F^{(r)}{ }_{R} \circ F^{(r-1)} \circ \ldots\right)\left(x_{L}, x_{R}\right)$ may not contain monomials $x_{L}^{\alpha_{L}} x_{R}^{\alpha_{R}}$
with (wt α_{L}, wt $\left.\alpha_{R}\right) \succ\left(k_{L}, k_{R}\right)$

Word-based division property - Trails

Proposition (better phrased)

$d_{0}=\left(k_{L}, k_{R}\right)$ can NOT be reached (from $d_{r}=(0,1)$)
$\Rightarrow\left(F^{(r)} \circ \circ F^{(r-1)} \circ \ldots\right)\left(x_{L}, x_{R}\right)$ does NOT contain monomials $x_{L}^{\alpha_{L}} x_{R}^{\alpha_{R}}$ with (wt α_{L}, wt $\left.\alpha_{R}\right) \succeq\left(k_{L}, k_{R}\right)$

Word-based division property - Trails

Definition (Trail)

A sequence $\left(d_{0}, \ldots, d_{r}\right), d_{i} \in\{0, \ldots, n\}^{2}$ is called a trail if $d_{i} \in \delta_{d_{i+1}}\left(F^{(i+1)}\right)$ or all i, denoted

$$
d_{0} \xrightarrow{F^{(1)}} d_{1} \xrightarrow{F^{(2)}} \ldots \xrightarrow{F^{(r-1)}} d_{r-1} \xrightarrow{F^{(r)}} d_{r}
$$

Bit-based division property (conventional)

$$
\in\{0,1\}^{n}
$$

$$
\begin{aligned}
& \in\{0,1\}^{n} \in\{0,1\}^{n} \in\{0,1\}^{n} \in\{0,1\}^{n} \\
& d_{0} \in \delta_{d_{1}}\left(F^{(1)}\right) d_{1} \in \delta_{d_{2}}\left(F^{(2)}\right) \quad d_{r-2} \in \delta_{d_{r-1}}\left(F^{(r-1)}\right)_{r-1} \in \delta_{1}\left(F^{(r)}\right) \quad d_{r}=(0,1,0, \ldots, 0) \\
& \underset{\boldsymbol{x}}{\bullet} F^{(1)} \xrightarrow[\boldsymbol{y}_{(1)}]{\vdots} F^{(2)} \\
& \xrightarrow[\boldsymbol{y}_{(r-2)}]{F^{(r-1)}} \underset{\boldsymbol{y}_{(r-1)}}{:} \xrightarrow[F^{(r)}]{\boldsymbol{z}^{\prime}}
\end{aligned}
$$

Definition

$$
\delta_{\boldsymbol{k}}(F)=\operatorname{MaxSet}\left\{\boldsymbol{\alpha} \mid \boldsymbol{\beta} \preceq \boldsymbol{k}, F(\boldsymbol{x})^{\boldsymbol{\beta}} \text { contains } \boldsymbol{x}^{\alpha}\right\}
$$

Proposition

$d_{0}=\boldsymbol{k}$ can NOT be reached (from $d_{r}=(0,1,0, \ldots, 0)$)
$\Rightarrow\left(F^{(r)}{ }_{2} \circ F^{(r-1)} \circ \ldots\right)(x)$ does NOT contain monomial multiples of \boldsymbol{x}^{k}

Bit-based division property (simpler formulation, Hu, Sun, Wang, and Wang 2020)

Definition

$\boldsymbol{x}^{\boldsymbol{u}} \xrightarrow{F} \boldsymbol{y}^{v}$ if $F(\boldsymbol{x})^{v}$ contains a multiple of $\boldsymbol{x}^{\boldsymbol{u}}$ in its ANF

Bit-based division property (simpler formulation, Hu, Sun, Wang, and Wang 2020)

Definition

$\boldsymbol{x}^{u} \xrightarrow{F} \boldsymbol{y}^{v}$ if $F(\boldsymbol{x})^{v}$ contains a multiple of \boldsymbol{x}^{u} in its ANF

Proposition

Fix $\boldsymbol{u}, \boldsymbol{v}$. Then, $\nexists \boldsymbol{w}_{1}, \ldots, \boldsymbol{w}_{r-1}:\left(\boldsymbol{x}^{\boldsymbol{u}} \xrightarrow{F^{(1)}} \boldsymbol{y}_{(1)}^{\boldsymbol{w}_{1}} \rightarrow \ldots \rightarrow \boldsymbol{y}_{(r-1)}^{\boldsymbol{w}_{r-1}} \xrightarrow{F^{(r)}} \boldsymbol{z}^{\boldsymbol{v}}\right)$ implies $\boldsymbol{x}^{\boldsymbol{u}} \xrightarrow{\mathrm{F}^{r} \mathrm{o} . .0 F^{1}} \boldsymbol{z}^{v}$ does not hold $\left(F(\boldsymbol{z})^{\vee}\right.$ does NOT contain a multiple of $\boldsymbol{x}^{\boldsymbol{u}}$)

Bound Summary (Review)

Plan

Problem formulation

Degree bounds

Division property
From state-based to bit-based
On bit-based division property
Computational aspects

Perfect division property and degree lower bounds

Interesting properties

Definition

$\boldsymbol{x}^{u} \xrightarrow{F} \boldsymbol{y}^{v}$ if $F(\boldsymbol{x})^{v^{\prime}}$ contains a multiple of \boldsymbol{x}^{u} in its ANF for some $v^{\prime} \preceq v$
Theorem (Udovenko 2021)
The following are equivalent:

1. $x^{u} \xrightarrow{F} y^{v}$
2. $y^{\neg \vee} \xrightarrow{F^{-1}} x^{\neg u}$
3. $\boldsymbol{x}^{u} \boldsymbol{y}^{\urcorner v}$ divides a monomial in $\mathbb{1}_{\Gamma_{F}}(\boldsymbol{x}, \boldsymbol{y})$

Graph-indicator formulation

Proposition (Carlet 2020)

Let $F^{(i)}: \mathbb{F}_{2}^{m_{i-1}} \rightarrow \mathbb{F}_{2}^{m_{i}}, i \in\{1, \ldots, r\}$, and $F=F^{(r)} \circ \ldots \circ F^{(1)}$. Then,

$$
\in \mathbb{F}_{2}^{m_{1}} \times \ldots \times \mathbb{F}_{2}^{m_{r-1}}
$$

Graph-indicator formulation

Proposition (Carlet 2020)

Let $F^{(i)}: \mathbb{F}_{2}^{m_{i-1}} \rightarrow \mathbb{F}_{2}^{m_{i}}, i \in\{1, \ldots, r\}$, and $F=F^{(r)} \circ \ldots \circ F^{(1)}$. Then,

$$
\mathbb{1}_{\Gamma_{F}}(\boldsymbol{x}, \boldsymbol{z})=\sum_{\substack{\left(\boldsymbol{y}_{1}, \ldots, \boldsymbol{y}_{r-1}\right) \\ \in \mathbb{F}_{2}^{m_{1}} \times \ldots \times \mathbb{F}_{2}^{m_{r-1}}}} \mathbb{1}_{\Gamma_{F^{(1)}}}\left(\boldsymbol{x}, \boldsymbol{y}_{1}\right) \cdot \mathbb{1}_{\Gamma_{F^{(2)}}}\left(\boldsymbol{y}_{1}, \boldsymbol{y}_{2}\right) \cdot \ldots \cdot \mathbb{1}_{\Gamma_{F^{(r)}}}\left(\boldsymbol{y}_{r-1}, \boldsymbol{z}\right)
$$

Theorem

$\mathbb{1}_{\Gamma_{F}}(\boldsymbol{x}, \boldsymbol{z})$ contains a multiple of $x^{u} z^{v}$ only if there exists a monomial sequence

$$
\begin{aligned}
& \boldsymbol{x}^{u^{\prime}} \boldsymbol{y}_{1}^{w_{1}} \in \mathbb{1}_{\Gamma_{F^{(1)}}}\left(\boldsymbol{x}, \boldsymbol{y}_{1}\right) \\
& \boldsymbol{y}_{1}^{w_{1}^{\prime}} \boldsymbol{y}_{2}^{w_{2}} \in \mathbb{1}_{\Gamma_{F^{(2)}}}\left(\boldsymbol{y}_{1}, \boldsymbol{y}_{2}\right) \\
& \ldots \\
& \boldsymbol{y}_{r-1}^{\boldsymbol{w}_{-1}^{\prime}} z^{v^{\prime}} \in \mathbb{1}_{\Gamma_{F^{(2)}}}\left(\boldsymbol{y}_{1}, \boldsymbol{y}_{2}\right)
\end{aligned}
$$

$$
\text { with } \boldsymbol{w}_{1} \vee \boldsymbol{w}_{1}^{\prime}=\ldots \boldsymbol{w}_{r-1} \vee \boldsymbol{w}_{r-1}^{\prime}=(1, \ldots, 1)
$$

$$
u^{\prime} \succeq u, v^{\prime} \succeq v
$$

Graph-indicator formulation

Theorem

$\mathbb{1}_{\Gamma_{F}}(\boldsymbol{x}, \boldsymbol{z})$ contains a multiple of $\boldsymbol{x}^{u} z^{v}$ only if there exists a monomial sequence

$$
\begin{array}{rlrl}
\boldsymbol{x}^{\boldsymbol{u}^{\prime}} \boldsymbol{y}_{1}^{\boldsymbol{w}_{1}} & \in \mathbb{1}_{\Gamma_{F(1)}}\left(\boldsymbol{x}, \boldsymbol{y}_{1}\right) & & \\
\boldsymbol{y}_{1}^{w_{1}^{\prime}} \boldsymbol{y}_{2}^{\boldsymbol{w}_{2}} & \in \mathbb{1}_{\Gamma_{F(2)}}\left(\boldsymbol{y}_{1}, \boldsymbol{y}_{2}\right) & \text { with } \boldsymbol{w}_{1} \vee \boldsymbol{w}_{1}^{\prime}=\ldots \boldsymbol{w}_{r-1} \vee \boldsymbol{w}_{r-1}^{\prime}=(1, \ldots, 1), \\
& \ldots & \boldsymbol{u}^{\prime} \succeq \boldsymbol{u}, \boldsymbol{v}^{\prime} \succeq \boldsymbol{v} \\
\boldsymbol{y}_{r-1}^{\boldsymbol{w}_{r-1}^{\prime} z^{v^{\prime}}} & \in \mathbb{1}_{\Gamma_{F(2)}}\left(\boldsymbol{y}_{1}, \boldsymbol{y}_{2}\right) & &
\end{array}
$$

if and only there exists a division property trail

$$
\boldsymbol{x}^{\boldsymbol{u}} \xrightarrow{F^{(1)}} \boldsymbol{y}_{1}^{t_{1}} \xrightarrow{F^{(2)}} \ldots \xrightarrow{F^{(r-1)}} \boldsymbol{y}_{r-1}^{t_{r-1}} \xrightarrow{F^{(r)}} \boldsymbol{z}^{\neg v}
$$

Plan

Problem formulation

Degree bounds

Division property
From state-based to bit-based
On bit-based division property
Computational aspects

Perfect division property and degree lower bounds

Computational aspects

- $\exists \boldsymbol{u}, \ldots, \boldsymbol{v}:\left(\boldsymbol{x}^{\boldsymbol{u}} \xrightarrow{F^{(1)}} \ldots \xrightarrow{F^{(r)}} \boldsymbol{z}^{\boldsymbol{v}}\right)$? - a search problem
- word-based : exhaustive search / dynamic programming
- bit-based : use SAT solver or MILP optimizer (integer programming)

Computational aspects

- $\exists \boldsymbol{u}, \ldots, \boldsymbol{v}:\left(\boldsymbol{x}^{\boldsymbol{u}} \xrightarrow{F^{(1)}} \ldots \xrightarrow{F^{(r)}} \boldsymbol{z}^{\boldsymbol{v}}\right)$? - a search problem
- word-based : exhaustive search / dynamic programming
- bit-based : use SAT solver or MILP optimizer (integer programming)

How to encode constraints of round propagation?

- parallel functions propagate separately
- precision loss: $\boldsymbol{x}^{\boldsymbol{u}} \xrightarrow{F^{(1)}} \boldsymbol{z}^{\boldsymbol{w}} \xrightarrow{F^{(2)}} \boldsymbol{y}^{\boldsymbol{v}}$ may result in worse bounds than $\boldsymbol{x}^{\boldsymbol{u}} \xrightarrow{F^{(2)}{ }_{\circ} F^{(1)}} \boldsymbol{y}^{\text {v }}$

Recall: SPN structure

Model S-box

Example: $S: \mathbb{F}_{2}^{8} \rightarrow \mathbb{F}_{2}^{8}$
Generic approaches

- Compute set of valid transitions $D=\{(\boldsymbol{u}, \boldsymbol{v})\} \subseteq \mathbb{F}_{2}^{16}, \boldsymbol{x}^{\boldsymbol{u}} \xrightarrow{S} \boldsymbol{y}^{v}$

Model S-box

Example: $S: \mathbb{F}_{2}^{8} \rightarrow \mathbb{F}_{2}^{8}$
Generic approaches

- Compute set of valid transitions $D=\{(\boldsymbol{u}, \boldsymbol{v})\} \subseteq \mathbb{F}_{2}^{16}, \boldsymbol{x}^{\boldsymbol{u}} \xrightarrow{S} \boldsymbol{y}^{v}$
- SAT: logic synthesis (Quine-McCluskey, Espresso, etc.)
- MILP: convex hull + greedy optimization

Model S-box

Example: $S: \mathbb{F}_{2}^{8} \rightarrow \mathbb{F}_{2}^{8}$

Generic approaches

- Compute set of valid transitions $D=\{(\boldsymbol{u}, \boldsymbol{v})\} \subseteq \mathbb{F}_{2}^{16}, \boldsymbol{x}^{\boldsymbol{u}} \xrightarrow{\boldsymbol{S}} \boldsymbol{y}^{\boldsymbol{v}}$
- SAT: logic synthesis (Quine-McCluskey, Espresso, etc.)
- MILP: convex hull + greedy optimization

Better approaches

- valid transitions are monotone $\Rightarrow 1$ DNF clause per maximal monomial in $\mathbb{1}_{\Gamma_{s}}$ $\boldsymbol{x}^{0101} \boldsymbol{y}^{0111} \Rightarrow\left(\neg u_{1} \wedge \neg u_{3} \wedge v_{1}\right)$

Model S-box

Example: $S: \mathbb{F}_{2}^{8} \rightarrow \mathbb{F}_{2}^{8}$

Generic approaches

- Compute set of valid transitions $D=\{(\boldsymbol{u}, \boldsymbol{v})\} \subseteq \mathbb{F}_{2}^{16}, \boldsymbol{x}^{\boldsymbol{u}} \xrightarrow{\boldsymbol{S}} \boldsymbol{y}^{\boldsymbol{v}}$
- SAT: logic synthesis (Quine-McCluskey, Espresso, etc.)
- MILP: convex hull + greedy optimization

Better approaches

- valid transitions are monotone $\Rightarrow 1$ DNF clause per maximal monomial in $\mathbb{1}_{\Gamma_{s}}$ $\boldsymbol{x}^{0101} \boldsymbol{y}^{0111} \Rightarrow\left(\neg u_{1} \wedge \neg u_{3} \wedge v_{1}\right)$
- remove redundant transitions (reduce search space): another monotone bound

Model S-box

Example: $S: \mathbb{F}_{2}^{8} \rightarrow \mathbb{F}_{2}^{8}$

Generic approaches

- Compute set of valid transitions $D=\{(\boldsymbol{u}, \boldsymbol{v})\} \subseteq \mathbb{F}_{2}^{16}, \boldsymbol{x}^{\boldsymbol{u}} \xrightarrow{\boldsymbol{S}} \boldsymbol{y}^{\boldsymbol{v}}$
- SAT: logic synthesis (Quine-McCluskey, Espresso, etc.)
- MILP: convex hull + greedy optimization

Better approaches

- valid transitions are monotone $\Rightarrow 1$ DNF clause per maximal monomial in $\mathbb{1}_{\Gamma_{s}}$

$$
\boldsymbol{x}^{0101} \boldsymbol{y}^{0111} \Rightarrow\left(\neg u_{1} \wedge \neg u_{3} \wedge v_{1}\right)
$$

- remove redundant transitions (reduce search space): another monotone bound
- 1 CNF clause is 1 inequality: (can be improved) $\left(u_{0} \vee \neg u_{1} \vee u_{2}\right) \Longleftrightarrow u_{0}+\left(1-u_{1}\right)+u_{2} \geq 1$ (binary variables)

Model S-box

Example: $S: \mathbb{F}_{2}^{8} \rightarrow \mathbb{F}_{2}^{8} \quad$ AES S-box: ≈ 400 CNF clauses, 27 inequalities

Generic approaches

- Compute set of valid transitions $D=\{(\boldsymbol{u}, \boldsymbol{v})\} \subseteq \mathbb{F}_{2}^{16}, \boldsymbol{x}^{\boldsymbol{u}} \xrightarrow{\boldsymbol{S}} \boldsymbol{y}^{\boldsymbol{v}}$
- SAT: logic synthesis (Quine-McCluskey, Espresso, etc.)
- MILP: convex hull + greedy optimization

Better approaches

- valid transitions are monotone $\Rightarrow 1$ DNF clause per maximal monomial in $\mathbb{1}_{\Gamma_{s}}$ $\boldsymbol{x}^{0101} \boldsymbol{y}^{0111} \Rightarrow\left(\neg u_{1} \wedge \neg u_{3} \wedge v_{1}\right)$
- remove redundant transitions (reduce search space): another monotone bound
- 1 CNF clause is 1 inequality: (can be improved) $\left(u_{0} \vee \neg u_{1} \vee u_{2}\right) \Longleftrightarrow u_{0}+\left(1-u_{1}\right)+u_{2} \geq 1$ (binary variables)

Model linear layer

Example: $L: \mathbb{F}_{2}^{32} \rightarrow \mathbb{F}_{2}^{32}$

Proposition (Zhang and Rijmen 2018)
$\boldsymbol{x}^{\boldsymbol{u}} \xrightarrow{L} \boldsymbol{y}^{\boldsymbol{v}}$ and \boldsymbol{v} is minimal \Longleftrightarrow the submatrix of L indexed by the vectors $\boldsymbol{u}, \boldsymbol{v}$ is invertible

Model linear layer

Example: $L: \mathbb{F}_{2}^{32} \rightarrow \mathbb{F}_{2}^{32}$

Proposition (Zhang and Rijmen 2018)
$\boldsymbol{x}^{\boldsymbol{u}} \xrightarrow{L} \boldsymbol{y}^{\boldsymbol{v}}$ and \boldsymbol{v} is minimal \Longleftrightarrow the submatrix of L indexed by the vectors $\boldsymbol{u}, \boldsymbol{v}$ is invertible
problem: very difficult to encode

Model linear layer

Example: $L: \mathbb{F}_{2}^{32} \rightarrow \mathbb{F}_{2}^{32}$

Proposition (Zhang and Rijmen 2018)

$\boldsymbol{x}^{\boldsymbol{u}} \xrightarrow{L} \boldsymbol{y}^{v}$ and \boldsymbol{v} is minimal \Longleftrightarrow the submatrix of L indexed by the vectors $\boldsymbol{u}, \boldsymbol{v}$ is invertible
problem: very difficult to encode
solution 1: model the inverse matrix by variables, encode matrix multiplication

Model linear layer

Example: $L: \mathbb{F}_{2}^{32} \rightarrow \mathbb{F}_{2}^{32}$

Proposition (Zhang and Rijmen 2018)

$\boldsymbol{x}^{\boldsymbol{u}} \xrightarrow{L} \boldsymbol{y}^{\boldsymbol{v}}$ and \boldsymbol{v} is minimal \Longleftrightarrow the submatrix of L indexed by the vectors $\boldsymbol{u}, \boldsymbol{v}$ is invertible
problem: very difficult to encode
solution 1: model the inverse matrix by variables, encode matrix multiplication solution 2: use a lossy method (decompose L into XORs) and filter solutions (lazy, callback)

Plan

Problem formulation

Degree bounds

Division property

Perfect division property and degree lower bounds
Definition
Computational aspects
Proving degree lower bounds

Plan

Problem formulation

Degree bounds

Division property

Perfect division property and degree lower bounds
Definition
Computational aspects
Proving degree lower bounds

Bound Summary (Review)

Bound Summary (Review)

Perfect division property

Definition

$\boldsymbol{x}^{\boldsymbol{u}} \xrightarrow{F} \boldsymbol{y}^{v}$ if $F(\boldsymbol{x})^{v^{\prime}}$ contains a multiple of $\boldsymbol{x}^{\boldsymbol{u}}$ in its ANF for some $\boldsymbol{v}^{\prime} \preceq v$

Perfect division property

Definition

$\boldsymbol{x}^{\boldsymbol{u}} \xrightarrow[\text { exact }]{F} \boldsymbol{y}^{v}$ if $F(\boldsymbol{x})^{v}$ contains a multiple of $\boldsymbol{x}^{\boldsymbol{u}}$ in its ANF for some $v^{\prime} \preceq v$

Perfect division property

Definition

$\boldsymbol{x}^{\boldsymbol{u}} \xrightarrow[\text { exact }]{F} \boldsymbol{y}^{v}$ if $F(\boldsymbol{x})^{v}$ contains $\boldsymbol{x}^{\boldsymbol{u}}$ in its ANF

Perfect division property

Definition

$\boldsymbol{x}^{\boldsymbol{u}} \underset{\text { exact }}{F} \boldsymbol{y}^{v}$ if $F(\boldsymbol{x})^{v}$ contains $\boldsymbol{x}^{\boldsymbol{u}}$ in its ANF

Theorem (Hu, Sun, Wang, and Wang 2020)

A trail

$$
x^{u} \xrightarrow[\text { exact }]{F^{(r)} \circ F^{(r-1)} \circ \ldots \circ F^{(1)}} z^{v}
$$

is valid if and only if the total number of trails

$$
\boldsymbol{x}^{\boldsymbol{u}} \xrightarrow[\text { exact }]{F^{(1)}} \boldsymbol{y}_{(1)}^{\boldsymbol{w}_{1}} \xrightarrow[\text { exact }]{\mathrm{F}^{(2)}} \ldots \xrightarrow[\text { exact }]{F^{(r-1)}} \boldsymbol{y}_{(r-1)}^{\boldsymbol{w}_{r-1}} \xrightarrow[\text { exact }]{F^{(s)}} \boldsymbol{z}^{v}
$$

is odd $\left(\right.$ trail $\left.=\operatorname{vector}\left(\boldsymbol{w}_{1}, \ldots, \boldsymbol{w}_{r-1}\right)\right)$

Plan

Problem formulation

Degree bounds

Division property

Perfect division property and degree lower bounds

Definition

Computational aspects
Proving degree lower bounds

Computational aspects

- SAT/MILP models: similar, but have to use generic models (not monotone anymore)
- Have to count trails: feasible only in a few cases (small block size/small number of rounds)
- Have to include keys as variables (all previous techniques were key-agnostic)

Plan

Problem formulation

Degree bounds

Division property
Perfect division property and degree lower bounds

Definition

Computational aspects
Proving degree lower bounds

Proving degree lower bounds (1)

Let $E(\boldsymbol{x}, \boldsymbol{k}): \mathbb{F}_{2}^{n} \times \mathbb{F}_{2}^{m} \rightarrow \mathbb{F}_{2}^{n}$ be a keyed permutation. We want to prove absence of integral distinguishers:

Definition (Integral resistance)
For any set of inputs $\emptyset \subsetneq X \subsetneq \mathbb{F}_{2}^{n}$ and any $\boldsymbol{\beta} \in \mathbb{F}_{2}^{n} \backslash\{0\}$, the function $\sum_{\boldsymbol{x} \in X}\langle\boldsymbol{\beta}, E(\boldsymbol{x}, \boldsymbol{k})\rangle$ is strictly key dependent.

Proving degree lower bounds (1)

Let $E(\boldsymbol{x}, \boldsymbol{k}): \mathbb{F}_{2}^{n} \times \mathbb{F}_{2}^{m} \rightarrow \mathbb{F}_{2}^{n}$ be a keyed permutation. We want to prove absence of integral distinguishers:

Definition (Integral resistance)

For any set of inputs $\emptyset \subsetneq X \subsetneq \mathbb{F}_{2}^{n}$ and any $\beta \in \mathbb{F}_{2}^{n} \backslash\{0\}$, the function $\sum_{\boldsymbol{x} \in X}\langle\boldsymbol{\beta}, E(\boldsymbol{x}, \boldsymbol{k})\rangle$ is strictly key dependent.

Theorem (Hebborn, Lambin, Leander, and Todo 2021)

It is sufficient to require that $\forall \boldsymbol{u}, \boldsymbol{\beta} \in \mathbb{F}_{2}^{n}$ the coefficient of $\boldsymbol{x}^{\boldsymbol{u}}$ in $\langle\boldsymbol{\beta}, E(\boldsymbol{x}, \boldsymbol{k})\rangle$ is a non-constant function of the key, and all these functions are linearly independent $(\boldsymbol{u} \neq(1, \ldots, 1), \boldsymbol{\beta} \neq(0, \ldots, 0))$

Proving degree lower bounds (2)

Definition (Integral resistance matrix: Hebborn, Lambin, Leander, and Todo 2021)

$$
\mathcal{I}=\left(\begin{array}{cccc}
\lambda_{1,1 ; v_{1}} & \lambda_{1,1 ; v_{2}} & \ldots & \lambda_{1,1 ; v_{s}} \\
\lambda_{2,1 ; v_{1}} & \lambda_{2,1 ; v_{2}} & \ldots & \lambda_{2,1 ; v_{s}} \\
& \vdots & & \\
\lambda_{n, 1 ; v_{1}} & \lambda_{n, 1 ; v_{2}} & \ldots & \lambda_{n, 1 ; v_{s}} \\
\lambda_{1,2 ; v_{1}} & \lambda_{1,2 ; v_{2}} & \ldots & \lambda_{1,2 ; v_{s}} \\
\lambda_{2,2 ; v_{1}} & \lambda_{1,2 ; v_{2}} & \ldots & \lambda_{2,2 ; v_{s}} \\
& \vdots & & \\
\lambda_{i, j ; v_{1}} & \lambda_{i, j ; v_{2}} & \ldots & \lambda_{i, j ; v_{s}} \\
& \vdots & & \\
\lambda_{n-1, n ; v_{1}} & \lambda_{n-1, n ; v_{2}} & \ldots & \lambda_{n-1, n ; v_{s}}
\end{array}\right) \in \mathbb{F}_{2}^{n^{n^{2} \times s}}
$$

Proving degree lower bounds (3)

Theorem (Hebborn, Lambin, Leander, and Todo 2021)
If there exists an integral resistance matrix I of full rank n^{2} for $E(x, k)$, then $E^{\prime}\left(\boldsymbol{x}, \boldsymbol{k} \| \boldsymbol{k}^{\prime}\right)=E\left(\boldsymbol{x}+\boldsymbol{k}^{\prime}, \boldsymbol{k}\right): \mathbb{F}_{2}^{n} \times \mathbb{F}_{2}^{m^{\prime}} \times \mathbb{F}_{2}^{m}$ is integral resistant.

Proving degree lower bounds (3)

Theorem (Hebborn, Lambin, Leander, and Todo 2021)

If there exists an integral resistance matrix I of full rank n^{2} for $E(\boldsymbol{x}, \boldsymbol{k})$, then $E^{\prime}\left(\boldsymbol{x}, \boldsymbol{k} \| \boldsymbol{k}^{\prime}\right)=E\left(\boldsymbol{x}+\boldsymbol{k}^{\prime}, \boldsymbol{k}\right): \mathbb{F}_{2}^{n} \times \mathbb{F}_{2}^{m^{\prime}} \times \mathbb{F}_{2}^{m}$ is integral resistant.

Extra whitening key \boldsymbol{k}^{\prime} : translate key-dependence from maximal monomials to lower-degree monomials

Example: $x_{1} x_{2} x_{3}$ becomes $\left(x_{1}+\boldsymbol{k}^{\prime}{ }_{1}\right)\left(x_{2}+\boldsymbol{k}^{\prime}{ }_{2}\right)\left(x_{3}+\boldsymbol{k}^{\prime}{ }_{3}\right)$ with all 2^{3} functions (from fixing x) being linearly independent

Proving degree lower bounds (3)

Theorem (Hebborn, Lambin, Leander, and Todo 2021)

If there exists an integral resistance matrix I of full rank n^{2} for $E(\boldsymbol{x}, \boldsymbol{k})$, then $E^{\prime}\left(\boldsymbol{x}, \boldsymbol{k} \| \boldsymbol{k}^{\prime}\right)=E\left(\boldsymbol{x}+\boldsymbol{k}^{\prime}, \boldsymbol{k}\right): \mathbb{F}_{2}^{n} \times \mathbb{F}_{2}^{m^{\prime}} \times \mathbb{F}_{2}^{m}$ is integral resistant.

Extra whitening key \boldsymbol{k}^{\prime} : translate key-dependence from maximal monomials to lower-degree monomials

Example: $x_{1} x_{2} x_{3}$ becomes $\left(x_{1}+\boldsymbol{k}^{\prime}{ }_{1}\right)\left(x_{2}+\boldsymbol{k}^{\prime}{ }_{2}\right)\left(x_{3}+\boldsymbol{k}^{\prime}{ }_{3}\right)$ with all 2^{3} functions (from fixing x) being linearly independent

Cost: $\geq n^{4}$ calls to perfect division property (parity counting)
Optimization: carefully choose key monomials (the $\boldsymbol{v}_{\boldsymbol{i}}$) to aid computations

Plan

Problem formulation
Degree bounds
Division property
Perfect division property and degree lower bounds
Conclusions

Open problem - extended representation

Let $S: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{n}$ for a small n, e.g. $n=4,8$

Open problem - extended representation

Let $S: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{n}$ for a small n, e.g. $n=4,8$
$\mathbb{1}_{\Gamma_{S}}$ typically has few maximal monomials $\boldsymbol{x}^{\boldsymbol{u}} \boldsymbol{y}^{v}$

Open problem - extended representation

Let $S: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{n}$ for a small n, e.g. $n=4,8$
$\mathbb{1}_{\Gamma_{s}}$ typically has few maximal monomials $\boldsymbol{x}^{\boldsymbol{u}} \boldsymbol{y}^{v}$
For linear maps A, B, maximal monomials of $\mathbb{1}_{\Gamma_{B O S O A}}$ can not be computed from $\operatorname{MaxSet}\left(\mathbb{1}_{\Gamma_{S}}\right)$ (in general)

Open problem - extended representation

Let $S: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{n}$ for a small n, e.g. $n=4,8$
$\mathbb{1}_{\Gamma_{s}}$ typically has few maximal monomials $\boldsymbol{x}^{u} \boldsymbol{y}^{v}$
For linear maps A, B, maximal monomials of $\mathbb{1}_{\Gamma_{B O S O A}}$ can not be computed from $\operatorname{MaxSet}\left(\mathbb{1}_{\Gamma_{S}}\right)$ (in general)

Question: how to represent all such sets compactly?

Conclusions

Conclusions

- division property is a powerful technique for degree/monomial bounds
- information/precision/computations trade-off
- links to theory (graph indicators)

Conclusions

Conclusions

- division property is a powerful technique for degree/monomial bounds
- information/precision/computations trade-off
- links to theory (graph indicators)

Open problems

- represent MaxSet $\left(\mathbb{1}_{\Gamma_{B \circ S O A}}\right)$ for all linear A, B compactly
- computational hardness (conventional division property)
- better handling of large linear maps
- generalization to non-binary fields

Conclusions

Conclusions

- division property is a powerful technique for degree/monomial bounds
- information/precision/computations trade-off
- links to theory (graph indicators)

Open problems

- represent $\operatorname{MaxSet}\left(\mathbb{1}_{\Gamma_{B \circ S O A}}\right)$ for all linear A, B compactly
- computational hardness (conventional division property)
- better handling of large linear maps
- generalization to non-binary fields
C.f. survey "Mathematical aspects of division property" (CCDS 2023)

References i

击 Boura, Christina and Anne Canteaut (2013). "On the Influence of the Algebraic Degree of F^{-1} on the Algebraic Degree of $\mathrm{G} \circ \mathrm{F}$ ". In: IEEE Transactions on Information Theory 59.1, pp. 691-702.
Boura, Christina, Anne Canteaut, and Christophe De Cannière (Feb. 2011). "Higher-Order Differential Properties of Keccak and Luffa". In: FSE 2011. Ed. by Antoine Joux. Vol. 6733. LNCS. Springer, Heidelberg, pp. 252-269. doi: 10.1007/978-3-642-21702-9_15.

图 Carlet, Claude (2020). "Graph indicators of vectorial functions and bounds on the algebraic degree of composite functions". In: IEEE Transactions on Information Theory, pp. 1-1. doi: 10.1109/TIT.2020.3017494.

References ii

(0. Hebborn, Phil, Baptiste Lambin, Gregor Leander, and Yosuke Todo (Dec. 2021). "Strong and Tight Security Guarantees Against Integral Distinguishers". In: ASIACRYPT 2021, Part I. Ed. by Mehdi Tibouchi and Huaxiong Wang. Vol. 13090. LNCS. Springer, Heidelberg, pp. 362-391. doi: 10.1007/978-3-030-92062-3_13.
围 Hu, Kai, Siwei Sun, Meiqin Wang, and Qingju Wang (Dec. 2020). "An Algebraic Formulation of the Division Property: Revisiting Degree Evaluations, Cube Attacks, and Key-Independent Sums". In: ASIACRYPT 2020, Part I. Ed. by Shiho Moriai and Huaxiong Wang. Vol. 12491. LNCS. Springer, Heidelberg, pp. 446-476. doi: 10.1007/978-3-030-64837-4_15.

References iif

- Udovenko, Aleksei (Dec. 2021). "Convexity of Division Property Transitions: Theory, Algorithms and Compact Models". In: ASIACRYPT 2021, Part I. Ed. by Mehdi Tibouchi and Huaxiong Wang. Vol. 13090. LNCS. Springer, Heidelberg, pp. 332-361. doi: 10.1007/978-3-030-92062-3_12.
固 Zhang, Wenying and Vincent Rijmen (Aug. 2018). "Division Cryptanalysis of Block Ciphers with a Binary Diffusion Layer". In: IET Information Security 13.2, pp. 87-95. issn: 1751-8717.

