Cryptanalysis of ARX-based White-box Implementations

Alex Biryukov Baptiste Lambin <u>Aleksei Udovenko</u> CHES 2023, September 14th

DCS and SnT, University of Luxembourg

Luxembourg's FNR and Germany's DFG joint project APLICA (C19/IS/13641232)

Introduction and the target design

Attack summary

Decomposition attack (affine encoding)

Decomposing attack (quadratic encoding)

Conclusions

- Implementation fully available, secret key unextractable?
- Extra: one-wayness, incompressibility, traitor traceability, ...

- Implementation fully available, secret key unextractable?
- Extra: one-wayness, incompressibility, traitor traceability, ...

• The most **challenging**: existing symmetric primitives, e.g. the AES, Speck

Implicit computations (Ranea, Vandersmissen, and Preneel 2022)

Let y = F(x)

• usual method: write down *polynomials* or a *circuit* for *F*:

 $y_1 = F_1(x)$ $y_2 = F_2(x)$

. . .

Implicit computations (Ranea, Vandersmissen, and Preneel 2022)

Let y = F(x)

• usual method: write down *polynomials* or a *circuit* for *F*:

 $y_1 = F_1(x)$ $y_2 = F_2(x)$

. . .

. . .

 $P_1(\mathbf{x}, \mathbf{y}) = 0$ $P_2(\mathbf{x}, \mathbf{y}) = 0$

Implicit computations (Ranea, Vandersmissen, and Preneel 2022)

Let $\mathbf{y} = F(\mathbf{x})$

• usual method: write down *polynomials* or a *circuit* for *F*:

 $y_1 = F_1(x)$ $y_2 = F_2(x)$

. . .

. . .

• implicit function: write down polynomials relating x, y:

 $P_1(\mathbf{x}, \mathbf{y}) = 0$ $P_2(\mathbf{x}, \mathbf{y}) = 0$

- how to compute *y* from *x*?
 - 1. require that P(x, y) is linear in y
 - 2. plug in value for $x = \overline{x}$
 - 3. solve linear system $P(\overline{x}, y) = 0$ for y

Modular addition

- let \boxplus denote word addition (modulo 2^n)
- *i*-th output bit (from LSB) has degree *i*
- $\bullet \ \Rightarrow \boxplus \ \mathsf{has} \ \mathsf{degree} \ n-1$
- however, there exists bilinear P such that $P(x, y, x \boxplus y) = 0$

Modular addition

- let \boxplus denote word addition (modulo 2^n)
- *i*-th output bit (from LSB) has degree *i*
- $\bullet \ \Rightarrow \boxplus \text{ has degree } n-1$
- however, there exists bilinear P such that $P(x, y, x \boxplus y) = 0$

Why implicit?

- let *I*, *O* be input/output encodings, *I* low-degree, *O* linear
- polynomial P(I(x), O(y)) can be written compactly (representing $O \circ F \circ I$)
- obfuscate using graph automorphisms

Self-equivalences (Vandersmissen, Ranea, and Preneel 2022; Ranea, Vandersmissen, and Preneel 2022)

- Designed by NSA (2014)
- Simple ARX structure (1 round $\stackrel{\text{aff}}{\simeq} (x \boxplus y, y))$
- Block size: 32, 48, 64, ... (2 words)
- Key size: 64, 72, 96, ... (2-4 words)

External encodings: none

External encodings: random

Introduction and the target design

Attack summary

Decomposition attack (affine encoding)

Decomposing attack (quadratic encoding)

Conclusions

Attack	Target	Time	Data	Comment
Algebraic key	А	$\mathcal{O}(n^3)$	$\mathcal{O}(n)$	No external encoding (any side)
recovery	Q	$\mathcal{O}(n^6)$	$\mathcal{O}(n^2)$	

Attack	Target	Time	Data	Comment
Algebraic key	A	$\mathcal{O}(n^3)$	$\mathcal{O}(n)$	No external encoding (any side)
recovery	Q	$\mathcal{O}(n^6)$	$\mathcal{O}(n^2)$	
Round oracle optimization	A	$\mathcal{O}(n^6)$	$\mathcal{O}(n^2)$	Computes bilinear implicit function
	Q	$\mathcal{O}(n^9)$	$\mathcal{O}(n^3)$	Computes quadratic-affine implicit function

Attack	Target	Time	Data	Comment
Algebraic key	A	$\mathcal{O}(n^3)$	$\mathcal{O}(n)$	No external encoding (any side)
recovery	Q	$\mathcal{O}(n^6)$	$\mathcal{O}(n^2)$	
Round oracle optimization	A	$\mathcal{O}(n^6)$	$\mathcal{O}(n^2)$	Computes bilinear implicit function
	Q	$\mathcal{O}(n^9)$	$\mathcal{O}(n^3)$	Computes quadratic-affine implicit function
Round oracle	A	$\mathcal{O}(n^6)$	$\mathcal{O}(n^2)$	Requires existence of bilinear implicit function
inversion	Q	$\mathcal{O}(n^6)$	$\mathcal{O}(n^2)$	<i>Heuristic, several bits have to be guessed</i>

Attack	Target	Time	Data	Comment
Algebraic key	A	$\mathcal{O}(n^3)$	$\mathcal{O}(n)$	No external encoding (any side)
recovery	Q	$\mathcal{O}(n^6)$	$\mathcal{O}(n^2)$	
Round oracle optimization	A	$\mathcal{O}(n^6)$	$\mathcal{O}(n^2)$	Computes bilinear implicit function
	Q	$\mathcal{O}(n^9)$	$\mathcal{O}(n^3)$	Computes quadratic-affine implicit function
Round oracle	A	$\mathcal{O}(n^6)$	$\mathcal{O}(n^2)$	Requires existence of bilinear implicit function
inversion	Q	$\mathcal{O}(n^6)$	$\mathcal{O}(n^2)$	<i>Heuristic, several bits have to be guessed</i>
Round	A	$\mathcal{O}(n^4)$	$\mathcal{O}(n^3)$	Total query time is at least $\mathcal{O}(n^6)$ (dominating)
decomposition	Q	$\mathcal{O}(n^6)$	$\mathcal{O}(n^2)$	Recovers quadratic encoding.

Attack	Target	Time	Data	Comment
Algebraic key	A	$\mathcal{O}(n^3)$	$\mathcal{O}(n)$	No external encoding (any side)
recovery	Q	$\mathcal{O}(n^6)$	$\mathcal{O}(n^2)$	
Round oracle optimization	A	$\mathcal{O}(n^6)$	$\mathcal{O}(n^2)$	Computes bilinear implicit function
	Q	$\mathcal{O}(n^9)$	$\mathcal{O}(n^3)$	Computes quadratic-affine implicit function
Round oracle	A	$\mathcal{O}(n^6)$	$\mathcal{O}(n^2)$	Requires existence of bilinear implicit function
inversion	Q	$\mathcal{O}(n^6)$	$\mathcal{O}(n^2)$	<i>Heuristic, several bits have to be guessed</i>
Round	A	$\mathcal{O}(n^4)$	$\mathcal{O}(n^3)$	Total query time is at least $\mathcal{O}(n^6)$ (dominating)
decomposition	Q	$\mathcal{O}(n^6)$	$\mathcal{O}(n^2)$	Recovers quadratic encoding.
Decomposition and key recovery	A,Q	$\mathcal{O}(n^6)$	$\mathcal{O}(n^3)$	Requires several consecutive decomposed rounds to recover the master key.

Introduction and the target design

Attack summary

Decomposition attack (affine encoding)

Decomposing attack (quadratic encoding)

Conclusions

Step 1: locate linear bits

Step 1: locate linear bits

1. locate linear bits, split unknown parts

2. trinagularize B's differential rank method • $z = x \boxplus y$

2. trinagularize B's differential rank method

- $z = x \boxplus y$
- $\Delta x = \underbrace{???1}_{k \text{ bits}} 00$
- $\Delta y = 0000000$

 $\xrightarrow{2. \text{ trinagularize } B's}$ differential rank method

- $z = x \boxplus y$
- $\Delta x = \underbrace{???1}_{k \text{ bits}} 00$
- $\Delta y = 0000000$
- Δ*z* = ????100

 $\xrightarrow{2. \text{ trinagularize } B's}$ differential rank method

- $z = x \boxplus y$
- $\Delta x = \underbrace{???1}_{k \text{ bits}} 00$
- $\Delta y = 0000000$
- Δ*z* = ????100
- $\operatorname{rank} \{ \Delta z \mid x \text{ rand.} \} \leq k$

 $\xrightarrow[]{2. trinagularize } B's \\ \xrightarrow[]{differential rank method}$

- $z = x \boxplus y$
- $\Delta x = \underbrace{???1}_{k \text{ bits}} 00$
- $\Delta y = 0000000$
- $\Delta z = ????100$
- rank $\{\Delta z \mid x \text{ rand.}\} \leq k$
- rank { $\Delta z \mid x \text{ rand.}$ } = max \Rightarrow the LSB is 1

 $\begin{array}{c} 2. \text{ trinagularize } B's \\ \hline \text{differential rank method} \end{array}$

- $z = x \boxplus y$
- $\Delta x = \underbrace{???1}_{k \text{ bits}} 00$
- $\Delta y = 0000000$
- Δ*z* = ????100
- rank $\{\Delta z \mid x \text{ rand.}\} \leq k$
- rank { $\Delta z \mid x \text{ rand.}$ } = max \Rightarrow the LSB is 1
- repeat \rightarrow get $B_1[0], B_2[0]$

Step 3: recover left-branch maps

Step 3: recover left-branch maps

3. recover T_1, T_2 using differential probabilities

Proposition 4. Let $z = x \boxplus y$ be an n-bit modular addition, $n \ge 3$. Set

$$\Delta y = 0, \quad \Delta x_1 = e_0 = (0, 0, 0, \dots, 0, 1), \quad \Delta x_2 = e_0 \oplus e_{n-2} = (0, 1, 0, \dots, 0, 1).$$

Then, the most probable transitions with input differences $(\Delta x_1, \Delta y)$ and $(\Delta x_2, \Delta y)$ respectively are described by

$$\Pr[(\Delta x_1, \Delta y) \xrightarrow{\boxplus} \Delta z] = \begin{cases} 1/2, & \Delta z = (0, \dots, 0, 0, 1) = \Delta x_1, \\ 1/4, & \Delta z = (0, \dots, 0, 1, 1), \\ \leq 1/4, & otherwise \dots \end{cases}$$
(4)
$$\Pr[(\Delta x_2, \Delta y) \xrightarrow{\boxplus} \Delta z] = \begin{cases} 1/4, & \Delta z = (0, 1, \dots, 0, 1) = \Delta x_2, \\ 1/4, & \Delta z = (1, 1, \dots, 0, 1) = \Delta x_2, \\ \leq 1/4, & otherwise \dots \end{cases}$$
(5)

Step 4: recover Feistel maps

Step 4: recover Feistel maps

4. recover $A_1, A_2 \boxplus c_1, A_3$

by fixing righthand side

Step 4: recover Feistel maps

4. recover $A_1, A_2 \boxplus c_1, A_3$ by fixing righthand side

- 8 solutions per y
- choose arbitrarily
- combine for lin. indep. y's
- $\bullet \ \Rightarrow \text{a solution}$
- (with some annoyances due to the carry *c*₁)

Step 5: finishing

- 1. recover affine equivalence of $c_1 \stackrel{\text{aff}}{\simeq} y_0 y_1$ (next slides)
- 2. move out the recovered Feistel maps A_1, A_2, A_3
- 3. collect all applied affine maps to get a decomposition of the original function

Step 5: finishing

- 1. recover affine equivalence of $c_1 \stackrel{\text{aff}}{\simeq} y_0 y_1$ (next slides)
- 2. move out the recovered Feistel maps A_1, A_2, A_3
- 3. collect all applied affine maps to get a decomposition of the original function

Introduction and the target design

Attack summary

Decomposition attack (affine encoding)

Decomposing attack (quadratic encoding)

Conclusions

- let $S: (x, y) \mapsto (x \boxplus y, y)$
- let A, Q be affine-quadratic self-equiv. of S: $S = Q \circ S \circ A$
- theorem: half of outputs of Q has to be linear

- let $S: (x, y) \mapsto (x \boxplus y, y)$
- let A, Q be affine-quadratic self-equiv. of S: $S = Q \circ S \circ A$
- theorem: half of outputs of Q has to be linear
- experimental: at most 3 quadratic outputs (linearly independent)

- let $S: (x, y) \mapsto (x \boxplus y, y)$
- let A, Q be affine-quadratic self-equiv. of S: $S = Q \circ S \circ A$
- theorem: half of outputs of Q has to be linear
- experimental: at most 3 quadratic outputs (linearly independent)
- experimental: each of them consists of 1-2 quadratic monomials (up to affine-equivalence)
- example:

$$x_0y_0, (x_{n-1}+y_{n-1})(x_1+x_5+\ldots+y_1+y_5+\ldots)$$

X ×N A (deg = 1)n 'n Q (deg = 2) $\not\mid N$ Z

• right branch leaks the quadratic monomials of B

- right branch leaks the quadratic monomials of B
- degree-2 outputs zero-sum on any 3-dimensional subspace
- but not on all 2-dimensional subspaces (separate from degree-1 output)

- right branch leaks the quadratic monomials of B
- degree-2 outputs zero-sum on any 3-dimensional subspace
- but not on all 2-dimensional subspaces (separate from degree-1 output)
- linear algebra to find corresp. part of $C^{(i)}$

Step 2: decompose into monomials

Problem

Given quadratic Boolean polynomial f, find a linear map A such that f(A(x)) has smallest number of quadratic terms

Example

Instance: $f(x) = x_0x_2 + x_0x_5 + x_0x_6 + x_1x_3 + x_1 + x_2x_3 + x_2x_5 + x_2x_6 + x_2 + x_5 + x_6$

Step 2: decompose into monomials

Problem

Given quadratic Boolean polynomial f, find a linear map A such that f(A(x)) has smallest number of quadratic terms

Example

Instance: $f(x) = x_0x_2 + x_0x_5 + x_0x_6 + x_1x_3 + x_1 + x_2x_3 + x_2x_5 + x_2x_6 + x_2 + x_5 + x_6$

Answer: $f(x) = (x_0 + x_1 + x_3)(x_2 + x_5 + x_6) + (x_1 + x_5 + x_6)(x_2 + x_3 + x_5 + x_6) + x_3 + x_1$

Step 2: decompose into monomials

Problem

Given quadratic Boolean polynomial f, find a linear map A such that f(A(x)) has smallest number of quadratic terms

Example

Instance: $f(x) = x_0x_2 + x_0x_5 + x_0x_6 + x_1x_3 + x_1 + x_2x_3 + x_2x_5 + x_2x_6 + x_2 + x_5 + x_6$

Answer: $f(x) = (x_0 + x_1 + x_3)(x_2 + x_5 + x_6) + (x_1 + x_5 + x_6)(x_2 + x_3 + x_5 + x_6) + x_3 + x_1$

Definition (Linear Structures)

A linear structure δ of f is a probability-1 differential over f:

 $\exists c \ \forall x \quad f(x+\delta) = f(x) + c$

Method: the dual space of LS is exactly the space of target linear combinations

- 1. inversion of Q easy due to sparsity
- 2. "detach" Q from current round and "attach" to the previous round
- 3. run affine-encoded decomposition attack

- 1. inversion of Q easy due to sparsity
- 2. "detach" Q from current round and "attach" to the previous round
- 3. run affine-encoded decomposition attack
- 4. combine round decompositions
- 5. extract subkeys (Vandersmissen, Ranea, and Preneel 2022)
- 6. recompute the master key (from 4 consecutive subkeys)

Introduction and the target design

Attack summary

Decomposition attack (affine encoding)

Decomposing attack (quadratic encoding)

Conclusions

Conclusions

Implicit framework

- higher-degree graph obfuscation is not very useful
- still interesting tool, but need other targets (than 1 ARX round)

Conclusions

Implicit framework

- higher-degree graph obfuscation is not very useful
- still interesting tool, but need other targets (than 1 ARX round)

White-box ARX

- first algebraic attack for ARX designs (degrees 1,2)
- 1-round with affine/sparse-quadratic encodings is too weak
- need more rounds or stronger encodings

Conclusions

Implicit framework

- higher-degree graph obfuscation is not very useful
- still interesting tool, but need other targets (than 1 ARX round)

White-box ARX

- first algebraic attack for ARX designs (degrees 1,2)
- 1-round with affine/sparse-quadratic encodings is too weak
- need more rounds or stronger encodings

github.com/cryptolu/implicit_ARX_whitebox_cryptanalysis tches.iacr.org/index.php/TCHES/article/view/10958