Cryptanalysis of ARX-based White-box Implementations

Alex Biryukov Baptiste Lambin Aleksei Udovenko

CHES 2023, September $14^{\text {th }}$
DCS and SnT , University of Luxembourg

SnT

Plan

Introduction and the target design

Attack summary

Decomposition attack (affine encoding)

Decomposing attack (quadratic encoding)

Conclusions

White-box cryptography

- Implementation fully available, secret key unextractable?
- Extra: one-wayness, incompressibility, traitor traceability, ...

White-box cryptography

- Implementation fully available, secret key unextractable?
- Extra: one-wayness, incompressibility, traitor traceability, ...
- The most challenging:
existing symmetric primitives, e.g. the AES, Speck

Implicit computations (Ranea, Vandersmissen, and Preneel 2022)

Let $y=F(x)$

- usual method: write down polynomials or a circuit for F :

$$
\begin{aligned}
& y_{1}=F_{1}(x) \\
& y_{2}=F_{2}(x)
\end{aligned}
$$

Implicit computations (Ranea, Vandersmissen, and Preneel 2022)

Let $y=F(x)$

- usual method: write down polynomials or a circuit for F :

$$
\begin{aligned}
& y_{1}=F_{1}(x) \\
& y_{2}=F_{2}(x)
\end{aligned}
$$

- implicit function: write down polynomials relating x, y :

$$
\begin{aligned}
& P_{1}(x, y)=0 \\
& P_{2}(x, y)=0
\end{aligned}
$$

Implicit computations (Ranea, Vandersmissen, and Preneel 2022)

Let $y=F(x)$

- usual method: write down polynomials or a circuit for F :

$$
\begin{aligned}
& y_{1}=F_{1}(x) \\
& y_{2}=F_{2}(x)
\end{aligned}
$$

- implicit function: write down polynomials relating x, y :

$$
\begin{aligned}
& P_{1}(x, y)=0 \\
& P_{2}(x, y)=0
\end{aligned}
$$

- how to compute y from x ?

1. require that $P(x, y)$ is linear in y
2. plug in value for $x=\bar{x}$
3. solve linear system $P(\bar{x}, y)=0$ for y

Implicit ARX (Ranea, Vandersmissen, and Preneel 2022)

Modular addition

- let \boxplus denote word addition (modulo 2^{n})
- i-th output bit (from LSB) has degree i
- $\Rightarrow \boxplus$ has degree $n-1$
- however, there exists bilinear P such that $P(x, y, x \boxplus y)=0$

Modular addition

- let \boxplus denote word addition (modulo 2^{n})
- i-th output bit (from LSB) has degree i
- $\Rightarrow \boxplus$ has degree $n-1$
- however, there exists bilinear P such that $P(x, y, x \boxplus y)=0$

Why implicit?

- let I, O be input/output encodings, I low-degree, O linear
- polynomial $P(I(x), O(y))$ can be written compactly (representing $O \circ F \circ I$)
- obfuscate using graph automorphisms

Self-equivalences (Vandersmissen, Ranea, and Preneel 2022; Ranea, Vandersmissen, and Preneel 2022)

Block-cipher family Speck

- Designed by NSA (2014)
- Simple ARX structure (1 round $\stackrel{\text { aff }}{\sim}(x \boxplus y, y))$
- Block size: 32, 48, 64, ... (2 words)
- Key size: $64,72,96, \ldots$ ($2-4$ words)

Speck-based implicit ARX white-box

Speck-based implicit ARX white-box

Speck-based implicit ARX white-box

Affine-quadratic self equivalence of $E^{(i)}$

Speck-based implicit ARX white-box

External encodings: none

External encodings: random

Plan

Introduction and the target design

Attack summary

Decomposition attack (affine encoding)

Decomposing attack (quadratic encoding)

Conclusions

Our attack summary

Attack	Target	Time	Data	Comment
Algebraic key	\mathbf{A}	$\mathcal{O}\left(n^{3}\right)$	$\mathcal{O}(n)$	No external encoding (any side)
recovery	\mathbf{Q}	$\mathcal{O}\left(n^{6}\right)$	$\mathcal{O}\left(n^{2}\right)$	

Our attack summary

Attack	Target	Time	Data	Comment
Algebraic key	\mathbf{A}	$\mathcal{O}\left(n^{3}\right)$	$\mathcal{O}(n)$	No external encoding (any side)
recovery	\mathbf{Q}	$\mathcal{O}\left(n^{6}\right)$	$\mathcal{O}\left(n^{2}\right)$	
Round oracle	\mathbf{A}	$\mathcal{O}\left(n^{6}\right)$	$\mathcal{O}\left(n^{2}\right)$	Computes bilinear implicit function
optimization	\mathbf{Q}	$\mathcal{O}\left(n^{9}\right)$	$\mathcal{O}\left(n^{3}\right)$	Computes quadratic-affine implicit function

Our attack summary

Attack	Target	Time	Data	Comment
Algebraic key	\mathbf{A}	$\mathcal{O}\left(n^{3}\right)$	$\mathcal{O}(n)$	No external encoding (any side)
recovery	\mathbf{Q}	$\mathcal{O}\left(n^{6}\right)$	$\mathcal{O}\left(n^{2}\right)$	
Round oracle	\mathbf{A}	$\mathcal{O}\left(n^{6}\right)$	$\mathcal{O}\left(n^{2}\right)$	Computes bilinear implicit function
optimization	\mathbf{Q}	$\mathcal{O}\left(n^{9}\right)$	$\mathcal{O}\left(n^{3}\right)$	Computes quadratic-affine implicit function
Round oracle	\mathbf{A}	$\mathcal{O}\left(n^{6}\right)$	$\mathcal{O}\left(n^{2}\right)$	Requires existence of bilinear implicit function
inversion	\mathbf{Q}	$\mathcal{O}\left(n^{6}\right)$	$\mathcal{O}\left(n^{2}\right)$	Heuristic, several bits have to be guessed

Our attack summary

Attack	Target	Time	Data	Comment
Algebraic key	\mathbf{A}	$\mathcal{O}\left(n^{3}\right)$	$\mathcal{O}(n)$	No external encoding (any side)
recovery	\mathbf{Q}	$\mathcal{O}\left(n^{6}\right)$	$\mathcal{O}\left(n^{2}\right)$	
Round oracle	\mathbf{A}	$\mathcal{O}\left(n^{6}\right)$	$\mathcal{O}\left(n^{2}\right)$	Computes bilinear implicit function
optimization	\mathbf{Q}	$\mathcal{O}\left(n^{9}\right)$	$\mathcal{O}\left(n^{3}\right)$	Computes quadratic-affine implicit function
Round oracle	\mathbf{A}	$\mathcal{O}\left(n^{6}\right)$	$\mathcal{O}\left(n^{2}\right)$	Requires existence of bilinear implicit function
inversion	\mathbf{Q}	$\mathcal{O}\left(n^{6}\right)$	$\mathcal{O}\left(n^{2}\right)$	Heuristic, several bits have to be guessed
Round	\mathbf{A}	$\mathcal{O}\left(n^{4}\right)$	$\mathcal{O}\left(n^{3}\right)$	Total query time is at least $\mathcal{O}\left(n^{6}\right)$ (dominating)
decomposition	\mathbf{Q}	$\mathcal{O}\left(n^{6}\right)$	$\mathcal{O}\left(n^{2}\right)$	Recovers quadratic encoding.

Our attack summary

Attack	Target	Time	Data	Comment		
Algebraic key	\mathbf{A}	$\mathcal{O}\left(n^{3}\right)$	$\mathcal{O}(n)$	No external encoding (any side)		
recovery	\mathbf{Q}	$\mathcal{O}\left(n^{6}\right)$	$\mathcal{O}\left(n^{2}\right)$			
Round oracle	\mathbf{A}	$\mathcal{O}\left(n^{6}\right)$	$\mathcal{O}\left(n^{2}\right)$	Computes bilinear implicit function		
optimization	\mathbf{Q}	$\mathcal{O}\left(n^{9}\right)$	$\mathcal{O}\left(n^{3}\right)$	Computes quadratic-affine implicit function		
Round oracle	\mathbf{A}	$\mathcal{O}\left(n^{6}\right)$	$\mathcal{O}\left(n^{2}\right)$	Requires existence of bilinear implicit function		
inversion	\mathbf{Q}	$\mathcal{O}\left(n^{6}\right)$	$\mathcal{O}\left(n^{2}\right)$	Heuristic, several bits have to be guessed		
Round decomposition	\mathbf{A}	$\mathcal{O}\left(n^{4}\right)$	$\mathcal{O}\left(n^{3}\right)$	Total query time is at least $\mathcal{O}\left(n^{6}\right)$ (dominating)		
Decomposition and key recovery	$\mathbf{A , Q}$	$\mathcal{O}\left(n^{6}\right)$	$\mathcal{O}\left(n^{2}\right)$	$\mathcal{O}\left(n^{3}\right)$		Recovers quadratic encoding.
:---						

Plan

Introduction and the target design

Attack summary

Decomposition attack (affine encoding)

Decomposing attack (quadratic encoding)

Conclusions

Step 1: locate linear bits

Step 1: locate linear bits

Step 2: triangularize left branch encodings

Step 2: triangularize left branch encodings

2. trinagularize B 's
differential rank method

Step 2: triangularize left branch encodings

2. trinagularize B 's
differential rank method

- $z=x \boxplus y$
- $\Delta x=\underbrace{? ? ? ? 1}_{\text {kbits }} 00$

Step 2: triangularize left branch encodings

2. trinagularize B 's
differential rank method

- $z=x \boxplus y$
- $\Delta x=\underbrace{? ? ? ? 1}_{\text {kbits }} 00$
- $\Delta y=0000000$

Step 2: triangularize left branch encodings

2. trinagularize B 's
differential rank method

- $z=x \boxplus y$
- $\Delta x=\underbrace{? ? ? ? 1}_{\text {kbits }} 00$
- $\Delta y=0000000$
- $\Delta z=? ? ? ? 100$

Step 2: triangularize left branch encodings

2. trinagularize B 's
differential rank method

- $z=x \boxplus y$
- $\Delta x=\underbrace{? ? ? ? 1}_{\text {kbits }} 00$
- $\Delta y=0000000$
- $\Delta z=$????100
- $\operatorname{rank}\{\Delta z \mid x$ rand. $\} \leq k$

Step 2: triangularize left branch encodings

2. trinagularize B 's
differential rank method

- $z=x \boxplus y$
- $\Delta x=\underbrace{? ? ? ? 1}_{\text {kbits }} 00$
- $\Delta y=0000000$
- $\Delta z=? ? ? ? 100$
- $\operatorname{rank}\{\Delta z \mid x$ rand. $\} \leq k$
- $\operatorname{rank}\{\Delta z \mid x$ rand. $\}=\max$ \Rightarrow the LSB is 1

Step 2: triangularize left branch encodings

2. trinagularize B 's
differential rank method

- $z=x \boxplus y$
- $\Delta x=\underbrace{? ? ? ? 1}_{\text {kbits }} 00$
- $\Delta y=0000000$
- $\Delta z=? ? ? ? 100$
- $\operatorname{rank}\{\Delta z \mid x$ rand. $\} \leq k$
- $\operatorname{rank}\{\Delta z \mid x$ rand. $\}=\max$ \Rightarrow the LSB is 1

- repeat \rightarrow get $B_{1}[0], B_{2}[0]$

Step 3: recover left-branch maps

Step 3: recover left-branch maps

3. recover T_{1}, T_{2}
using differential probabilities

Step 3: recover left-branch maps

Proposition 4. Let $z=x \boxplus y$ be an n-bit modular addition, $n \geq 3$. Set

$$
\Delta y=0, \quad \Delta x_{1}=e_{0}=(0,0,0, \ldots, 0,1), \quad \Delta x_{2}=e_{0} \oplus e_{n-2}=(0,1,0, \ldots, 0,1) .
$$

Then, the most probable transitions with input differences $\left(\Delta x_{1}, \Delta y\right)$ and $\left(\Delta x_{2}, \Delta y\right)$ respectively are described by

$$
\begin{align*}
& \operatorname{Pr}\left[\left(\Delta x_{1}, \Delta y\right) \xrightarrow{\boxplus} \Delta z\right]= \begin{cases}1 / 2, & \Delta z=(0, \ldots, 0,0,1)=\Delta x_{1}, \\
1 / 4, & \Delta z=(0, \ldots, 0,1,1), \\
\leq 1 / 4, & \text { otherwise } \ldots\end{cases} \tag{4}\\
& \operatorname{Pr}\left[\left(\Delta x_{2}, \Delta y\right) \xrightarrow{\boxplus} \Delta z\right]= \begin{cases}1 / 4, & \Delta z=(0,1, \ldots, 0,1)=\Delta x_{2}, \\
1 / 4, & \Delta z=(1,1, \ldots, 0,1)=\Delta x_{2}, \\
\leq 1 / 4, & \text { otherwise } \ldots\end{cases} \tag{5}
\end{align*}
$$

Step 4: recover Feistel maps

Step 4: recover Feistel maps

Step 4: recover Feistel maps

4. recover $A_{1}, A_{2} \boxplus c_{1}, A_{3}$
by fixing righthand side

- 8 solutions per y
- choose arbitrarily
- combine for lin. indep. y's
- \Rightarrow a solution
- (with some annoyances due to the carry c_{1})

Step 5: finishing

1. recover affine equivalence of $c_{1} \stackrel{\text { aff }}{\sim} y_{0} y_{1}$ (next slides)
2. move out the recovered Feistel maps A_{1}, A_{2}, A_{3}
3. collect all applied affine maps to get a decomposition of the original function

Step 5: finishing

1. recover affine equivalence of $c_{1} \stackrel{\text { aff }}{\sim} y_{0} y_{1}$ (next slides)
2. move out the recovered Feistel maps A_{1}, A_{2}, A_{3}
3. collect all applied affine maps to get a decomposition of the original function

Plan

Introduction and the target design

Attack summary

Decomposition attack (affine encoding)

Decomposing attack (quadratic encoding)

Conclusions

Sparsity observations

- let $S:(x, y) \mapsto(x \boxplus y, y)$
- let A, Q be affine-quadratic self-equiv. of S : $S=Q \circ S \circ A$
- theorem: half of outputs of Q has to be linear

Sparsity observations

- let $S:(x, y) \mapsto(x \boxplus y, y)$
- let A, Q be affine-quadratic self-equiv. of S : $S=Q \circ S \circ A$
- theorem: half of outputs of Q has to be linear
- experimental: at most 3 quadratic outputs (linearly independent)

Sparsity observations

- let $S:(x, y) \mapsto(x \boxplus y, y)$
- let A, Q be affine-quadratic self-equiv. of S : $S=Q \circ S \circ A$
- theorem: half of outputs of Q has to be linear
- experimental: at most 3 quadratic outputs (linearly independent)
- experimental: each of them consists of 1-2 quadratic monomials (up to affine-equivalence)
- example:
$x_{0} y_{0},\left(x_{n-1}+y_{n-1}\right)\left(x_{1}+x_{5}+\ldots+y_{1}+y_{5}+\ldots\right)$

Step 1: locate exposed quadratic bits

- right branch leaks the quadratic monomials of B

Step 1: locate exposed quadratic bits

- right branch leaks the quadratic monomials of B
- degree-2 outputs zero-sum on any 3 -dimensional subspace
- but not on all 2-dimensional subspaces (separate from degree-1 output)

Step 1: locate exposed quadratic bits

- right branch leaks the quadratic monomials of B
- degree-2 outputs zero-sum on any 3 -dimensional subspace
- but not on all 2-dimensional subspaces (separate from degree-1 output)
- linear algebra to find corresp. part of $C^{(i)}$

Step 2: decompose into monomials

Problem

Given quadratic Boolean polynomial f, find a linear map A such that $f(A(x))$ has smallest number of quadratic terms

Example

Instance: $f(x)=x_{0} x_{2}+x_{0} x_{5}+x_{0} x_{6}+x_{1} x_{3}+x_{1}+x_{2} x_{3}+x_{2} x_{5}+x_{2} x_{6}+x_{2}+x_{5}+x_{6}$

Step 2: decompose into monomials

Problem

Given quadratic Boolean polynomial f, find a linear map A such that $f(A(x))$ has smallest number of quadratic terms

Example

Instance: $f(x)=x_{0} x_{2}+x_{0} x_{5}+x_{0} x_{6}+x_{1} x_{3}+x_{1}+x_{2} x_{3}+x_{2} x_{5}+x_{2} x_{6}+x_{2}+x_{5}+x_{6}$
Answer: $f(x)=\left(x_{0}+x_{1}+x_{3}\right)\left(x_{2}+x_{5}+x_{6}\right)+\left(x_{1}+x_{5}+x_{6}\right)\left(x_{2}+x_{3}+x_{5}+x_{6}\right)+x_{3}+x_{1}$

Step 2: decompose into monomials

Problem

Given quadratic Boolean polynomial f, find a linear map A such that $f(A(x))$ has smallest number of quadratic terms

Example

Instance: $f(x)=x_{0} x_{2}+x_{0} x_{5}+x_{0} x_{6}+x_{1} x_{3}+x_{1}+x_{2} x_{3}+x_{2} x_{5}+x_{2} x_{6}+x_{2}+x_{5}+x_{6}$
Answer: $f(x)=\left(x_{0}+x_{1}+x_{3}\right)\left(x_{2}+x_{5}+x_{6}\right)+\left(x_{1}+x_{5}+x_{6}\right)\left(x_{2}+x_{3}+x_{5}+x_{6}\right)+x_{3}+x_{1}$

Definition (Linear Structures)

A linear structure δ of f is a probability- 1 differential over f :

$$
\exists c \forall x \quad f(x+\delta)=f(x)+c
$$

Method: the dual space of LS is exactly the space of target linear combinations

Step 3: algebraic recovery of Q^{\prime}

Final Steps

1. inversion of Q - easy due to sparsity
2. "detach" Q from current round and "attach" to the previous round
3. run affine-encoded decomposition attack

Final Steps

1. inversion of Q - easy due to sparsity
2. "detach" Q from current round and "attach" to the previous round
3. run affine-encoded decomposition attack
4. combine round decompositions
5. extract subkeys (Vandersmissen, Ranea, and Preneel 2022)
6. recompute the master key (from 4 consecutive subkeys)

Plan

Introduction and the target design

Attack summary

Decomposition attack (affine encoding)

Decomposing attack (quadratic encoding)

Conclusions

Conclusions

Implicit framework

- higher-degree graph obfuscation is not very useful
- still interesting tool, but need other targets (than 1 ARX round)

Conclusions

Implicit framework

- higher-degree graph obfuscation is not very useful
- still interesting tool, but need other targets (than 1 ARX round)

White-box ARX

- first algebraic attack for ARX designs (degrees 1,2)
- 1-round with affine/sparse-quadratic encodings is too weak
- need more rounds or stronger encodings

Conclusions

Implicit framework

- higher-degree graph obfuscation is not very useful
- still interesting tool, but need other targets (than 1 ARX round)

White-box ARX

- first algebraic attack for ARX designs (degrees 1,2)
- 1-round with affine/sparse-quadratic encodings is too weak
- need more rounds or stronger encodings

> github.com/cryptolu/implicit_ARX_whitebox_cryptanalysis tches.iacr.org/index.php/TCHES/article/view/10958

