
: Versatile Software Obfuscation from a
Lightweight Secure Element

Darius Mercadier1 Viet Sang Nguyen2 Matthieu Rivain3 Aleksei Udovenko4

CHES 2024, September 6th

1Google
2Université Jean Monnet
3CryptoExperts
4SnT, University of Luxembourg

Acknowledgements:
French ANR SWITECH project (ANR-AAPG2019)

Luxembourg’s FNR and Germany’s DFG joint project APLICA (C19/IS/13641232)

https://ches.iacr.org/2024/


Plan

Introduction

Obfuscation with Secure Element (TCC’10)

OBSCURE

Applications & Benchmarks

Conclusions

0



(Cryptographic) Code obfuscation

White-box cryptography

1

⇝

Credits: Matt Zucker. IOCCC obfuscation contest 2011.



(Cryptographic) Code obfuscation

Generic code obfuscation

1

⇝

Credits: Matt Zucker. IOCCC obfuscation contest 2011.



Obfuscation: State-of-the-Art

White-box Cryptography:

• Practical & Fast
Chow, Eisen, Johnson, and Oorschot 2002

• Totally insecure
Billet, Gilbert, and Ech-Chatbi 2004

Theoretical Obfuscation (iO):

• Totally impractical

• Secure
Jain, Lin, and Sahai 2021

2



Obfuscation: State-of-the-Art

White-box Cryptography:

• Practical & Fast
Chow, Eisen, Johnson, and Oorschot 2002

• Totally insecure
Billet, Gilbert, and Ech-Chatbi 2004

Theoretical Obfuscation (iO):

• Totally impractical

• Secure
Jain, Lin, and Sahai 2021

2



Obfuscation: State-of-the-Art

White-box Cryptography:

• Practical & Fast
Chow, Eisen, Johnson, and Oorschot 2002

• Totally insecure
Billet, Gilbert, and Ech-Chatbi 2004

Theoretical Obfuscation (iO):

• Totally impractical

• Secure
Jain, Lin, and Sahai 2021

2



Obfuscation: State-of-the-Art

White-box Cryptography:

• Practical & Fast
Chow, Eisen, Johnson, and Oorschot 2002

• Totally insecure
Billet, Gilbert, and Ech-Chatbi 2004

Theoretical Obfuscation (iO):

• Totally impractical

• Secure
Jain, Lin, and Sahai 2021

2



Besides iO and White-box

3



Besides iO and White-box

Hardware security:

3



Besides iO and White-box

Hardware security:

3



Besides iO and White-box

Hardware security:

3



Besides iO and White-box

Hardware security:

3



Besides iO and White-box

Hardware security:

3

Trusted
Execution
Environment (TEE)
(SGX, TrustZone, . . .)



Besides iO and White-box

Hardware security:

3

Trusted
Execution
Environment (TEE)
(SGX, TrustZone, . . .)

Increased functionality & complexity

Larger attack surface



Besides iO and White-box

Hardware security:

3

Trusted
Execution
Environment (TEE)
(SGX, TrustZone, . . .)

Increased functionality & complexity

Larger attack surface

Increased functionality & complexity

Larger attack surface



Obfuscating with Hardware

• “Founding Cryptography on Tamper-Proof Hardware Tokens”
Goyal, Ishai, Sahai, Venkatesan, and Wadia 2010 TCC

• Program obfuscation using stateless secure HW tokens

4



Obfuscating with Hardware

• “Founding Cryptography on Tamper-Proof Hardware Tokens”
Goyal, Ishai, Sahai, Venkatesan, and Wadia 2010 TCC

• Program obfuscation using stateless secure HW tokens

4



Obfuscating with Hardware

• “Founding Cryptography on Tamper-Proof Hardware Tokens”
Goyal, Ishai, Sahai, Venkatesan, and Wadia 2010 TCC

• Program obfuscation using stateless secure HW tokens

This work: exploring the design space, generalization
Focus: performance and user-friendliness (and security)

4



Our work - Overview

1. Compiler from a subset of C to an “obfuscated” bytecode

2. Generalize instruction set: Boolean circuits → 32-bit instructions

3. Instruction batching (multi-instructions) and clusterization algorithms

4. Rectangular universalization for protecting logic/data dependencies

5. Applications: traceable white-box ciphers, neural networks, . . .

5



Our work - Overview

1. Compiler from a subset of C to an “obfuscated” bytecode

2. Generalize instruction set: Boolean circuits → 32-bit instructions

3. Instruction batching (multi-instructions) and clusterization algorithms

4. Rectangular universalization for protecting logic/data dependencies

5. Applications: traceable white-box ciphers, neural networks, . . .

5



Our work - Overview

1. Compiler from a subset of C to an “obfuscated” bytecode

2. Generalize instruction set: Boolean circuits → 32-bit instructions

3. Instruction batching (multi-instructions) and clusterization algorithms

4. Rectangular universalization for protecting logic/data dependencies

5. Applications: traceable white-box ciphers, neural networks, . . .

5



Our work - Overview

1. Compiler from a subset of C to an “obfuscated” bytecode

2. Generalize instruction set: Boolean circuits → 32-bit instructions

3. Instruction batching (multi-instructions) and clusterization algorithms

4. Rectangular universalization for protecting logic/data dependencies

5. Applications: traceable white-box ciphers, neural networks, . . .

5



Our work - Overview

1. Compiler from a subset of C to an “obfuscated” bytecode

2. Generalize instruction set: Boolean circuits → 32-bit instructions

3. Instruction batching (multi-instructions) and clusterization algorithms

4. Rectangular universalization for protecting logic/data dependencies

5. Applications: traceable white-box ciphers, neural networks, . . .

5



Our work - Overview

1. Compiler from a subset of C to an “obfuscated” bytecode

2. Generalize instruction set: Boolean circuits → 32-bit instructions

3. Instruction batching (multi-instructions) and clusterization algorithms

4. Rectangular universalization for protecting logic/data dependencies

5. Applications: traceable white-box ciphers, neural networks, . . .

5

Increased functionality & complexity

Larger attack surface



Our work - Overview

1. Compiler from a subset of C to an “obfuscated” bytecode

2. Generalize instruction set: Boolean circuits → 32-bit instructions

3. Instruction batching (multi-instructions) and clusterization algorithms

4. Rectangular universalization for protecting logic/data dependencies

5. Applications: traceable white-box ciphers, neural networks, . . .

5

Increased functionality & complexity

Larger attack surface

OBFUSCURO
(NDSS’19)

IRON
(CCS’17)

SGX



Our work - Overview

1. Compiler from a subset of C to an “obfuscated” bytecode

2. Generalize instruction set: Boolean circuits → 32-bit instructions

3. Instruction batching (multi-instructions) and clusterization algorithms

4. Rectangular universalization for protecting logic/data dependencies

5. Applications: traceable white-box ciphers, neural networks, . . .

5

Increased functionality & complexity

Larger attack surface

OBFUSCURO
(NDSS’19)

IRON
(CCS’17)

SGX

PHANTOM GhostRider HOP
(CCS’13) (ASPLOS’15) (NDSS’17)

CPU + ORAM



Plan

Introduction

Obfuscation with Secure Element (TCC’10)

OBSCURE

Applications & Benchmarks

Conclusions

5



Obfuscation with Secure Element

6



Obfuscation with Secure Element

priv

pub

6



Obfuscation with Secure Element

priv

pub

6



Obfuscation with Secure Element

priv

pub

6



Obfuscation with Secure Element

priv

pub

input

output

6



Obfuscation with Secure Element

priv

pub

input

output

Problem: too complex secure element!

6



Scheme from TCC’10 (1/2)

x1 x2 x3

& ⊕

v

y1

7



Scheme from TCC’10 (1/2)

x1 x2 x3

& ⊕

v

y1

7



Scheme from TCC’10 (1/2)

x1 x2 x3

& ⊕

v

y1

7



Scheme from TCC’10 (1/2)

7



Scheme from TCC’10 (1/2)

z1 z2

Decrypt Decrypt

Encrypt

Compute

Decrypt &

z3

7



Scheme from TCC’10 (2/2)

Prevent mix-and-match attacks:

• Authenticate node labels

• Pass around execution identity ≈ hash of the full input

• Lock to obfuscation identity

Hybrid encryption:

• Decrypt symmetric key for instructions once, reencrypt using internal symm. key

More details omitted, 4-5 different query types needed...

8



Scheme from TCC’10 (2/2)

Prevent mix-and-match attacks:

• Authenticate node labels

• Pass around execution identity ≈ hash of the full input

• Lock to obfuscation identity

Hybrid encryption:

• Decrypt symmetric key for instructions once, reencrypt using internal symm. key

More details omitted, 4-5 different query types needed...

8



Scheme from TCC’10 (2/2)

Prevent mix-and-match attacks:

• Authenticate node labels

• Pass around execution identity ≈ hash of the full input

• Lock to obfuscation identity

Hybrid encryption:

• Decrypt symmetric key for instructions once, reencrypt using internal symm. key

More details omitted, 4-5 different query types needed...

8



Scheme from TCC’10 (2/2)

Prevent mix-and-match attacks:

• Authenticate node labels

• Pass around execution identity ≈ hash of the full input

• Lock to obfuscation identity

Hybrid encryption:

• Decrypt symmetric key for instructions once, reencrypt using internal symm. key

More details omitted, 4-5 different query types needed...

8



Scheme from TCC’10 (2/2)

Prevent mix-and-match attacks:

• Authenticate node labels

• Pass around execution identity ≈ hash of the full input

• Lock to obfuscation identity

Hybrid encryption:

• Decrypt symmetric key for instructions once, reencrypt using internal symm. key

More details omitted, 4-5 different query types needed...

8



Plan

Introduction

Obfuscation with Secure Element (TCC’10)

OBSCURE

Applications & Benchmarks

Conclusions

8



High-level overview

C bytecodeCompiler

Interpreter

Secure 
Element

Input Output

9



Example C code

10



Example C code

Subset of C language:
• only uint32 (incl. pointers) supported

• constant-length loops (to be unrolled)

• no data-dependent control flow

• ternary operator allowed:
condition ? expr1 : expr2

10



Compilation chain

C AST HLIR SLP

MLIR DFG
(universal)LLIR SLPBytecode

Parsing Normalization Clusterization

LoweringSerialization

MLIR DFG

Universalization

11



Obfuscation process

12



Multi-instructions

13



SE queries

14



SE queries

15



Universalization

x1 x2 x3 x4 xn−1 xn. . .

. . .

. . .

. . .

MI MI MI

MI MI MI

⋮ ⋮ ⋮

MI MI MI

y1 y2 y3 y4 yn−1 yn
width n

d
ep

th
d

16



Plan

Introduction

Obfuscation with Secure Element (TCC’10)

OBSCURE

Applications & Benchmarks

Conclusions

16



SE parameters

SE name
#MI inputs
&outputs

#MI
instr.

Estimated performance on
ARM Cortex-M3 (120 MHz)

small 8 32 600 MIs/sec
medium 16 64 300 MIs/sec
large 32 128 150 MIs/sec

extra-large 64 256 75 MIs/sec

17



Benchmarks - White-box mode

Source
Secure
Element

#instr.
#MIs
(final)

Compil.
time

Exec. time
(est.)

AES

small

5.3k

290 3.2 sec 0.5 sec
medium 120 3.1 sec 0.4 sec
large 59 3.1 sec 0.4 sec
xlarge 29 3.2 sec 0.4 sec

Traceable
AES

small

11k

580 4.8 sec 1.0 sec
medium 240 4.4 sec 0.8 sec
large 120 4.8 sec 0.8 sec
xlarge 59 4.7 sec 0.8 sec

Neural Net

small

230k

22k 220 min 36.7 sec
medium 11k 58 min 36.7 sec
large 5.5k 21 min 36.7 sec
xlarge 2.6k 520 sec 36.7 sec

White-box obfuscation mode. Time estimated on ARM Cortex-M3 120 MHz. 18



Benchmarks - Full obfuscation

Source
Secure
Element

#instr. Depth Width
#MIs
(final)

Exec. time
(est)

AES

small

5.3k

190 7 12k 20 sec
medium 110 3 3.4k 11 sec
large 58 2 1.0k 7 sec
xlarge 29 1 0.1k 2 sec

sum(tree)

small

1000

6 1.2k 28k 47 sec
medium 3 63 3.1k 11 sec
large 4 56 3.8k 26 sec
xlarge 3 46 2.0k 27 sec

findmax(tree)

small

2k

5 190 24k 40 sec
medium 3 63 3k 11 sec
large 3 57 3k 20 sec
xlarge 3 47 2k 27 sec

Full obfuscation mode.

19



Plan

Introduction

Obfuscation with Secure Element (TCC’10)

OBSCURE

Applications & Benchmarks

Conclusions

19



Conclusions

• Obfuscation framework with provable reduction to HW security
• Compilation from C programs
• Rectangular universalization
• Interpreter & runtime simulator

• Stateless and lightweight HW requirement: reduced attack surface

(?) Open question: protected hardware design

github.com/CryptoExperts/OBSCURE

tches.iacr.org/index.php/TCHES/article/view/11440

20

https://github.com/CryptoExperts/OBSCURE
https://tches.iacr.org/index.php/TCHES/article/view/11440


Conclusions

• Obfuscation framework with provable reduction to HW security
• Compilation from C programs
• Rectangular universalization
• Interpreter & runtime simulator

• Stateless and lightweight HW requirement: reduced attack surface

(?) Open question: protected hardware design

github.com/CryptoExperts/OBSCURE

tches.iacr.org/index.php/TCHES/article/view/11440

20

https://github.com/CryptoExperts/OBSCURE
https://tches.iacr.org/index.php/TCHES/article/view/11440


Conclusions

• Obfuscation framework with provable reduction to HW security
• Compilation from C programs
• Rectangular universalization
• Interpreter & runtime simulator

• Stateless and lightweight HW requirement: reduced attack surface

(?) Open question: protected hardware design

github.com/CryptoExperts/OBSCURE

tches.iacr.org/index.php/TCHES/article/view/11440

20

https://github.com/CryptoExperts/OBSCURE
https://tches.iacr.org/index.php/TCHES/article/view/11440

	Introduction
	Obfuscation with Secure Element (TCC'10)
	OBSCURE
	Applications & Benchmarks
	Conclusions

