Exact Formula for RX-Differential Probability Through Modular Addition for All Rotations

Alex Biryukov Baptiste Lambin <u>Aleksei Udovenko</u> FSE 2025, March 18th

DCS and SnT, University of Luxembourg

UNIVERSITÉ DU LUXEMBOURG

Luxembourg's FNR and Germany's DFG joint project APLICA (C19/IS/13641232)

Rotational-XOR Cryptanalysis

Exact Probability Formula for all Rotations k

Modeling and Applications

New best RX-trails for Alzette

RX-backdoor from malicious constants - Malzette

Conclusions

Rotational-XOR Cryptanalysis

Exact Probability Formula for all Rotations k

Modeling and Applications

Conclusions

Through XOR

Through XOR

Related-Key

Theorem ([AL16], k = 1)

$$\mathbf{p} = \mathbb{1}_{(I \oplus \mathsf{SHL})(\chi_L) \oplus 1 \preccurlyeq \mathsf{SHL}(\nu_L)} \qquad \cdot 2^{-\operatorname{wt}(\mathsf{SHL}(\nu_L))} \cdot 2^{-3} \\ + \mathbb{1}_{(I \oplus \mathsf{SHL})(\chi_L) \preccurlyeq \mathsf{SHL}(\nu_L)} \qquad \cdot 2^{-\operatorname{wt}(\mathsf{SHL}(\nu_L))} \cdot 2^{-1.415}$$

Theorem ([AL16], k = 1)

 $p = \mathbb{1}_{(I \oplus SHL)(\chi_L) \oplus 1 \preccurlyeq SHL(\nu_L)} \cdot 2^{-\operatorname{wt}(SHL(\nu_L))} \cdot 2^{-3}$ $+ \mathbb{1}_{(I \oplus SHL)(\chi_L) \preccurlyeq SHL(\nu_L)} \cdot 2^{-\operatorname{wt}(SHL(\nu_L))} \cdot 2^{-1.415}$

where

$$\begin{split} &(\chi_L || \chi_0) = \alpha \oplus \beta \oplus \Delta \\ &(\nu_L || \nu_0) = (\alpha \oplus \beta) \lor (\alpha \oplus \Delta) \quad (\textit{not-all-equal}) \\ &\text{SHL} : \text{shift left by 1 position (drop MSB)} \\ &2^{-\operatorname{wt}(\mathsf{SHL}(\nu_L))} \text{ is a normal ARX differential prob. (excl. LSB)} \end{split}$$

Ours: probability, any k $p = T_{n-k}(\chi_L, \nu_L, \chi_0) \times T_k(\chi_R, \nu_R, \chi_k)$ $T_m(\boldsymbol{\chi}, \boldsymbol{\nu}, \hat{\chi}_i) = 2^{-\text{wt}(\text{SHL}(\boldsymbol{\nu}))-1}$ $+ \mathbb{1}_{\boldsymbol{\chi} \in \{0...0, 1...1\}} \times (-1)^{\hat{\chi}_i} \times 2^{-m-1}$

[AL16], *k* = 1

Not fully correct:

 \exists class of transitions with probability

2x lower or 1.5x higher

Ours: probability, any k $p = T_{n-k}(\chi_L, \nu_L, \chi_0) \times T_k(\chi_R, \nu_R, \chi_k)$ $T_m(\boldsymbol{\chi}, \boldsymbol{\nu}, \hat{\chi}_i) = 2^{-\text{wt}(\text{SHL}(\boldsymbol{\nu}))-1}$ $+ \mathbb{1}_{\boldsymbol{\chi} \in \{0...0, 1...1\}} \times (-1)^{\hat{\chi}_i} \times 2^{-m-1}$

[AL16], k = 1

Not fully correct:

 \exists class of transitions with probability

2x lower or 1.5x higher

[HXW22], any k

Incorrect:

large discrepancies with experiments, imprecise validity condition

Ours: probability, any k $p = T_{n-k}(\chi_L, \nu_L, \chi_0) \times T_k(\chi_R, \nu_R, \chi_k)$ $T_m(\boldsymbol{\chi}, \boldsymbol{\nu}, \hat{\chi}_i) = 2^{-\text{wt}(\text{SHL}(\boldsymbol{\nu}))-1}$ $+ \mathbb{1}_{\boldsymbol{\chi} \in \{0...0, 1...1\}} \times (-1)^{\hat{\chi}_i} \times 2^{-m-1}$

[AL16], k = 1

Not fully correct:

 \exists class of transitions with probability

2x lower or 1.5x higher

[HXW22], any k

Incorrect:

large discrepancies with experiments, imprecise validity condition

Ours: probability, any k $p = T_{n-k}(\chi_L, \nu_L, \chi_0) \times T_k(\chi_R, \nu_R, \chi_k)$ $T_m(\boldsymbol{\chi}, \boldsymbol{\nu}, \hat{\chi}_i) = 2^{-\text{wt}(\text{SHL}(\boldsymbol{\nu}))-1}$ $+\mathbb{1}_{\boldsymbol{\chi} \in \{0...0, 1...1\}} \times (-1)^{\hat{\chi}_i} \times 2^{-m-1}$

Ours: validity, any k p > 0 if and only if $u_i \le v_i$ $\forall i \ne 0, k$ $u = (I \oplus SHL)(\alpha \oplus \beta \oplus \Delta)$ $v = SHL((\alpha \oplus \Delta) \lor (\beta \oplus \Delta))$

[AL16], *k* = 1

Not fully correct:

 \exists class of transitions with probability

2x lower or 1.5x higher

[HXW22], any *k*

Incorrect:

large discrepancies with experiments, imprecise validity condition

Ours: probability, any k $p = T_{n-k}(\chi_L, \nu_L, \chi_0) \times T_k(\chi_R, \nu_R, \chi_k)$ $T_m(\boldsymbol{\chi}, \boldsymbol{\nu}, \hat{\chi}_i) = 2^{-\mathrm{wt}(\mathrm{SHL}(\boldsymbol{\nu}))-1}$ $+\mathbb{1}_{\chi \in \{0...0,1...1\}} \times (-1)^{\hat{\chi}_i} \times 2^{-m-1}$

Ours: validity, any kp > 0 if and only if $u_i \leq v_i$ $\forall i \neq 0, k$ $u = (I \oplus SHL)(\alpha \oplus \beta \oplus \Delta)$ $\mathbf{v} = \mathsf{SHL}((\alpha \oplus \Delta) \lor (\beta \oplus \Delta))$

Extensively verified by experiments!

Rotational-XOR Cryptanalysis

Exact Probability Formula for all Rotations k

Modeling and Applications

Conclusions

Theorem (Main, if p > 0)

 $p = T_{n-k}(\alpha_L, \beta_L, \Delta_L, \alpha_0 \oplus \beta_0 \oplus \Delta_0) \times T_k(\alpha_R, \beta_R, \Delta_R, \alpha_k \oplus \beta_k \oplus \Delta_k)$

Theorem (Main, if p > 0)

 $p = T_{n-k}(\alpha_L, \beta_L, \Delta_L, \alpha_0 \oplus \beta_0 \oplus \Delta_0) \times T_k(\alpha_R, \beta_R, \Delta_R, \alpha_k \oplus \beta_k \oplus \Delta_k)$

where

$$T_m(\alpha,\beta,\Delta,\mathsf{w}) = 2^{-d-1} + \mathbb{1}_{\alpha \oplus \beta \oplus \Delta \in \{0...0,1...1\}} \times (-1)^{\mathsf{w}} \times 2^{-m-1}$$

$$d = \operatorname{wt}(\mathsf{SHL}(\nu)) = \operatorname{wt}(\mathsf{SHL}((\alpha \oplus \beta) \lor (\alpha \oplus \Delta)))$$

$$\chi = \alpha \oplus \beta \oplus \Delta$$
$$\nu = (\alpha \oplus \beta) \lor (\alpha \oplus \Delta)$$

Theorem (Main, if p > 0)

$$p = T_{n-k}(\chi_L, \nu_L, \chi_0) \times T_k(\chi_R, \nu_R, \chi_k)$$

where

$${\mathcal T}_m({m \chi}, {m
u}, {\hat \chi}_i) = 2^{-{
m wt}({
m SHL}({m
u}))-1} \ + \ {1\!\!1}_{{m \chi} \in \{0...0, 1...1\}} imes (-1)^{{\hat \chi}_i} imes 2^{-m-1}$$

Theorem (RX-differential, 0 < k < n)

$$p = \Pr\left[\left(\overleftarrow{\mathbf{x}} \oplus \alpha\right) \boxplus \left(\overleftarrow{\mathbf{y}} \oplus \beta\right) \oplus \overleftarrow{\mathbf{x} \boxplus \mathbf{y}} = \Delta\right] > 0$$

if and only if $u_i \leq v_i$ for all $i \neq 0, k$, where

 $u = (I \oplus \mathsf{SHL})(\alpha \oplus \beta \oplus \Delta)$ $v = \mathsf{SHL}((\alpha \oplus \Delta) \lor (\beta \oplus \Delta))$

Theorem (Normal differential (k = 0), Lipmaa and Moriai 2002)

$$p = \Pr\left[(x \oplus \alpha) \boxplus (y \oplus \beta) \oplus x \boxplus y = \Delta\right] > 0$$

if and only if $u_i \leq v_i$ for all *i*, where

 $u = (I \oplus \mathsf{SHL})(\alpha \oplus \beta \oplus \Delta)$ $v = \mathsf{SHL}((\alpha \oplus \Delta) \lor (\beta \oplus \Delta))$

Theorem ([AL16], k = 1)

 $\boldsymbol{\rho} = \mathbb{1}_{(I \oplus \mathsf{SHL})(\chi_L) \oplus \mathbf{1} \preccurlyeq \mathsf{SHL}(\nu_L)}$ $+ \mathbb{1}_{(I \oplus \mathsf{SHL})(\chi_L) \preccurlyeq \mathsf{SHL}(\nu_L)}$

 $\cdot 2^{-\operatorname{wt}(\operatorname{SHL}(\nu_L))} \cdot 2^{-3}$ $\cdot 2^{-\operatorname{wt}(\operatorname{SHL}(\nu_L))} \cdot 2^{-1.415}$

Theorem ([AL16], k = 1)

$$p = \mathbb{1}_{(I \oplus SHL)(\chi_L) \oplus \mathbf{1} \preccurlyeq SHL(\nu_L)}$$
$$+ \mathbb{1}_{(I \oplus SHL)(\chi_L) \preccurlyeq SHL(\nu_L)}$$

$$\cdot 2^{-\operatorname{wt}(\mathsf{SHL}(\nu_L))} \cdot 2^{-3}$$

 $\cdot 2^{-\operatorname{wt}(\mathsf{SHL}(\nu_L))} \cdot 2^{-1.415}$

Theorem (Ours)

Theorem ([AL16], k = 1)

$$p = \mathbb{1}_{(I \oplus SHL)(\chi_L) \oplus \mathbf{1} \preccurlyeq SHL(\nu_L)}$$
$$+ \mathbb{1}_{(I \oplus SHL)(\chi_L) \preccurlyeq SHL(\nu_L)}$$

$$\cdot 2^{-\operatorname{wt}(\mathsf{SHL}(\nu_L))} \cdot 2^{-3}$$

 $\cdot 2^{-\operatorname{wt}(\mathsf{SHL}(\nu_L))} \cdot 2^{-1.415}$

Theorem (Ours)

Thm [AL16] holds exactly when $\chi_L \notin \{0 \dots 0, 1 \dots 1\}$, where $(\chi_L || \chi_0) = \alpha \oplus \beta \oplus \Delta$.

• Correction factor: 2x lower or 1.5x higher actual prob.

Theorem ([AL16], k = 1)

$$p = \mathbb{1}_{(I \oplus SHL)(\chi_L) \oplus \mathbf{1} \preccurlyeq SHL(\nu_L)}$$
$$+ \mathbb{1}_{(I \oplus SHL)(\chi_L) \preccurlyeq SHL(\nu_L)}$$

$$\cdot 2^{-\operatorname{wt}(\operatorname{SHL}(\nu_L))} \cdot 2^{-3}$$

 $\cdot 2^{-\operatorname{wt}(\operatorname{SHL}(\nu_L))} \cdot 2^{-1.415}$

Theorem (Ours)

- Correction factor: 2x lower or 1.5x higher actual prob.
- High prob. trail: $\chi_L = 0...0$ is likely to occur (sparse), but negl. correction

Theorem ([AL16], k = 1)

$$p = \mathbb{1}_{(I \oplus SHL)(\chi_L) \oplus \mathbf{1} \preccurlyeq SHL(\nu_L)}$$
$$+ \mathbb{1}_{(I \oplus SHL)(\chi_L) \preccurlyeq SHL(\nu_L)}$$

$$\cdot 2^{-\operatorname{wt}(\operatorname{SHL}(\nu_L))} \cdot 2^{-3}$$

2^{-wt}(SHL(ν_L)) 2^{-1.41}

Theorem (Ours)

- Correction factor: 2x lower or 1.5x higher actual prob.
- High prob. trail: $\chi_L = 0...0$ is likely to occur (sparse), but negl. correction
- Low prob. trail: unlikely to occur (dense)

Theorem ([AL16], k = 1)

$$p = \mathbb{1}_{(I \oplus \mathsf{SHL})(\chi_L) \oplus \mathbf{1} \preccurlyeq \mathsf{SHL}(\nu_L)}$$
$$+ \mathbb{1}_{(I \oplus \mathsf{SHL})(\chi_L) \preccurlyeq \mathsf{SHL}(\nu_L)}$$

$$\cdot 2^{-\operatorname{wt}(\operatorname{SHL}(\nu_L))} \cdot 2^{-3}$$

2-wt(SHL(ν_L)) 2-1.41

Theorem (Ours)

Thm [AL16] holds exactly when $\chi_L \notin \{0 \dots 0, 1 \dots 1\}$, where $(\chi_L || \chi_0) = \alpha \oplus \beta \oplus \Delta$.

- Correction factor: 2x lower or 1.5x higher actual prob.
- High prob. trail: $\chi_L = 0...0$ is likely to occur (sparse), but negl. correction
- Low prob. trail: unlikely to occur (dense)

Conclusion: concrete trails are probably not affected, optimality claims do

Rotational-XOR Cryptanalysis

Exact Probability Formula for all Rotations k

Modeling and Applications

- New best RX-trails for Alzette
- RX-backdoor from malicious constants Malzette

Conclusions

MILP Model

Model 1 - Heuristic (NEQ)

- Ignore the approximation factor: $p \approx 2^{-\operatorname{wt} \operatorname{SHL} \nu_L \operatorname{wt} \operatorname{SHL} \nu_R 2}$
- A special case of the standard ARX model
- Bonus: model $[y = 1 \text{ if and only if } x_1 = \ldots = x_m]$ with 4 inequalities for any m

Model 1 - Heuristic (NEQ)

- Ignore the approximation factor: $p \approx 2^{-\operatorname{wt} \operatorname{SHL} \nu_L \operatorname{wt} \operatorname{SHL} \nu_R 2}$
- A special case of the standard ARX model
- Bonus: model $[y = 1 \text{ if and only if } x_1 = \ldots = x_m]$ with 4 inequalities for any m

Model 2 - Precise

- Model the weight of the correction factor using logarithm tables (PieceWise-Linear constraints PWL)
- "Flag" variables to determine if the correction is needed

Alzette (64-bit ARX-box, 4 32-bit modular additions)

	CASCADA,[LWRA17]	This work	This work	[HXW22]	[HXW22]
	(k=1)	(k = 1)	(k > 1)	(k = 1)	(k > 1)
Ci	wt	wt	wt	wt	wt
<i>c</i> 0	33.66	33.66	33.93	37.66	43.00
c_1	31.66	31.66	33.01	38.66	-
<i>c</i> ₂	37.66	37.66	34.00	52.66	-
C3	38.66	38.66	32.75	45.66	-
С4	35.66	35.66	33.00	45.66	-
<i>C</i> 5	32.66	33.66	30.89	44.66	-
<i>c</i> ₆	30.66	30.66	32.97	40.66	-
С7	37.66	37.66	32.45	49.66	-

(all values are $-\log_2 p$)

$$\begin{vmatrix} & & & \\ \oplus & & & \\ & & & \\ & & & \\ & & & \\ \oplus & c_{2r} & \oplus & c_{2r+1} \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & &$$

٦

Round	Constants	$\log_2(\text{prob})$
1	1c71c924:249cad47	-2.83
2	49249c71:1249871c	-1.83
3	6db6c71c:5b127ffe	-3.19
4	38e39249:152ad249	-1.83
5	638e36db:649cad55	-2.83
6	1c71c7ff:471c9492	-1.83
7	36db6d55:63f1c71d	-2.83
8	471c7249:36a4ff1c	-2.19
9	4924938e:5b6c8e47	-3.19
10	2aab6db6:71c736db	-1.83
11	6db638e3:55b9c71d	-2.83
12	fb3d2330:b6da4b61	-2.19
Total		-29.41 11

)

- Diff./lin. lower bounds 2^{54} and 2^{38}
- RX-differential prob. $2^{-29.41}$ (k = 3)
- Verified experimentally

Round	Constants	$\log_2(\text{prob})$
1	1c71c924:249cad47	-2.83
2	49249c71:1249871c	-1.83
3	6db6c71c:5b127ffe	-3.19
4	38e39249:152ad249	-1.83
5	638e36db:649cad55	-2.83
6	1c71c7ff:471c9492	-1.83
7	36db6d55:63f1c71d	-2.83
8	471c7249:36a4ff1c	-2.19
9	4924938e:5b6c8e47	-3.19
10	2aab6db6:71c736db	-1.83
11	6db638e3:55b9c71d	-2.83
12	fb3d2330:b6da4b61	-2.19

)

- Diff./lin. lower bounds 2^{54} and 2^{38}
- RX-differential prob. $2^{-24.86}$ (k = 3)
- Verified experimentally

Round	Constants	$\log_2(\text{prob})$
1	00000000:4e381c1c	-2.19
2	2aaaaaaa:36dbe492	-2.19
3	7fffffff:1236db6c	-1.83
4	55555555:0763638e	-1.83
5	2aaaaaaa:1b6d4949	-2.19
6	55555555:638ef1c7	-1.83
7	00000000:47638e39	-2.19
8	2aaaaaaa:5236b6db	-2.19
9	55555555:4e381c1c	-1.83
10	7fffffff:638eb1c7	-2.19
11	7fffffff:47638e39	-2.19
12	3f2bb31e:b6c004cc	-2.19
-		

Rotational-XOR Cryptanalysis

Exact Probability Formula for all Rotations k

Modeling and Applications

Conclusions

Conclusions

Theory

- Compact exact probability for all rotations k
- Useful ARX theory
- RXDP with constant addition state machine (Q: can be simplified?)

Conclusions

Theory

- Compact exact probability for all rotations k
- Useful ARX theory
- RXDP with constant addition state machine (Q: can be simplified?)

Applications

- MILP model using PWL
- Applied to Alzette, Toy Speck, etc. (Q: improve performance, SMT?)
- Malzette proof-of-concept RX-backdoor

Conclusions

Theory

- Compact exact probability for all rotations k
- Useful ARX theory
- RXDP with constant addition state machine (Q: can be simplified?)

Applications

- MILP model using PWL
- Applied to Alzette, Toy Speck, etc. (Q: improve performance, SMT?)
- Malzette proof-of-concept RX-backdoor

github.com/cryptolu/RX-Differentials-Probability tosc.iacr.org/index.php/ToSC/article/view/12087

References i

 Ashur, Tomer and Yunwen Liu (2016). "Rotational Cryptanalysis in the Presence of Constants". In: IACR Trans. Symm. Cryptol. 2016.1, pp. 57–70. issn: 2519-173X. doi: 10.13154/tosc.v2016.i1.57-70. url:

https://tosc.iacr.org/index.php/ToSC/article/view/535.

Daum, Magnus (2005). "Cryptanalysis of Hash functions of the MD4-family". PhD thesis. Ruhr University Bochum. url:

http://www-brs.ub.ruhr-uni-bochum.de/netahtml/HSS/Diss/DaumMagnus/.

Huang, Mingjiang, Zhen Xu, and Liming Wang (2022). "On the Probability and Automatic Search of Rotational-XOR Cryptanalysis on ARX Ciphers". In: *Comput. J.* 65.12, pp. 3062–3080. doi: 10.1093/COMJNL/BXAB126.

References ii

- Khovratovich, Dmitry and Ivica Nikolic (Feb. 2010). "Rotational Cryptanalysis of ARX". In: FSE 2010. Ed. by Seokhie Hong and Tetsu Iwata. Vol. 6147. LNCS. Springer, Berlin, Heidelberg, pp. 333–346. doi: 10.1007/978-3-642-13858-4_19.
- Lipmaa, Helger and Shiho Moriai (Apr. 2002). "Efficient Algorithms for Computing Differential Properties of Addition". In: FSE 2001. Ed. by Mitsuru Matsui. Vol. 2355. LNCS. Springer, Berlin, Heidelberg, pp. 336–350. doi: 10.1007/3-540-45473-X_28.
- Liu, Yunwen, Glenn De Witte, Adrián Ranea, and Tomer Ashur (2017).
 "Rotational-XOR Cryptanalysis of Reduced-round SPECK". In: IACR Trans. Symm. Cryptol. 2017.3, pp. 24–36. issn: 2519-173X. doi: 10.13154/tosc.v2017.i3.24-36.

Ranea, Adrián and Vincent Rijmen (2022). "Characteristic automated search of cryptographic algorithms for distinguishing attacks (CASCADA)". In: IET Inf. Secur. 16.6, pp. 470–481. doi: 10.1049/ise2.12077.

Proof ideas - Decomposition

$$\begin{array}{c|c} k & n-k \\ x, y & x_L & x_R \\ \overleftarrow{x}, \overleftarrow{y} & x_R & x_L \\ \alpha, \beta, \Delta & \alpha_{L'} & a_{R'} \\ \hline n-k & k \end{array}$$

Proof ideas - Decomposition

$$\begin{array}{c|c} k & n-k \\ x, y & x_L & x_R \\ \overleftarrow{x}, \overleftarrow{y} & x_R & x_L \\ \alpha, \beta, \Delta & \alpha_{L'} & a_{R'} \\ & & n-k & k \end{array}$$

 $\begin{cases} (x_R \oplus \alpha_{L'}) \boxplus (y_R \oplus \beta_{L'}) \boxplus c_L \oplus x_R \boxplus y_R = \Delta_{L'} \\ (x_L \oplus \alpha_{R'}) \boxplus (y_L \oplus \beta_{R'}) \oplus x_L \boxplus y_L \boxplus c_R = \Delta_{R'} \\ c_R = \mathbb{1}_{x_R + y_R \ge 2^{n-k}} \\ c_L = \mathbb{1}_{(x_L \oplus \alpha_{R'}) + (y_L \oplus \beta_{R'}) \ge 2^k} \end{cases}$

Proof ideas - Decomposition

$$\begin{array}{c|c} k & n-k \\ x,y & x_L & x_R \\ \overleftarrow{x}, \overleftarrow{y} & x_R & x_L \\ \alpha, \beta, \Delta & \alpha_{L'} & a_{R'} \\ \hline n-k & k \end{array}$$

 $\begin{cases} (x_R \oplus \alpha_{L'}) \boxplus (y_R \oplus \beta_{L'}) \boxplus c_L \oplus x_R \boxplus y_R = \Delta_{L'} \\ (x_L \oplus \alpha_{R'}) \boxplus (y_L \oplus \beta_{R'}) \oplus x_L \boxplus y_L \boxplus c_R = \Delta_{R'} \\ c_R = \mathbb{1}_{x_R + y_R \ge 2^{n-k}} \\ c_L = \mathbb{1}_{(x_L \oplus \alpha_{R'}) + (y_L \oplus \beta_{R'}) \ge 2^k} \end{cases}$

$$\left\{egin{array}{ll} (x\opluslpha)\boxplus(y\opluseta)\boxplus(lpha_0\opluseta_0\oplus\Delta_0)\oplus x\boxplus y=eta\ \mathbbm{1}_{x+y\geq 2^m}={\sf w}\end{array}
ight.$$

Proof ideas - Recursion

Proposition (Carry-constrained Differential through ⊞) Let

 $XDS_n = \#\{(x, y) \mid x \boxplus y \oplus (x \oplus \alpha) \boxplus (y \oplus \beta) = \Delta\}$ (Lipmaa-Moriai) $R_n(\alpha, \beta, \Delta) = \#\{(x, y) \in XDS_n(\alpha, \beta, \Delta) \mid x + y < 2^n\}$

Then, for $\tilde{\alpha} = (\alpha' || \alpha), \tilde{\beta} = (\beta' || \beta), \tilde{\Delta} = (\Delta' || \Delta), \chi' = \alpha' \oplus \beta' \oplus \Delta'$ we have

 $\boldsymbol{R}_{n+1}(\tilde{\alpha}, \tilde{\beta}, \tilde{\Delta}) = \begin{cases} 2\boldsymbol{R}_n(\alpha, \beta, \Delta) \text{ if not } (\alpha_{n-1} = \beta_{n-1} = \Delta_{n-1}) \text{ and } \chi' = 0 \\ \# XDS_n(\alpha, \beta, \Delta) \text{ if not } (\alpha_{n-1} = \beta_{n-1} = \Delta_{n-1}) \text{ and } \chi' = 1 \\ \# XDS_n(\alpha, \beta, \Delta) + 2\boldsymbol{R}_n(\alpha, \beta, \Delta) \text{ if } \alpha_{n-1} = \beta_{n-1} = \Delta_{n-1} = 0 \text{ and } \chi' = 0 \\ 2 \times \# XDS_n(\alpha, \beta, \Delta) \text{ if } \delta_{n-1} = \alpha_{n-1} = \beta_{n-1} = \Delta_{n-1} = 1 \text{ and } \chi' = 1 \end{cases}$

Theorem ([AL16], k = 1)

 $\boldsymbol{\rho} = \mathbb{1}_{(I \oplus \mathsf{SHL})(\chi_L) \oplus \mathbf{1} \preccurlyeq \mathsf{SHL}(\nu_L)}$ $+ \mathbb{1}_{(I \oplus \mathsf{SHL})(\chi_L) \preccurlyeq \mathsf{SHL}(\nu_L)}$

 $\cdot 2^{-\operatorname{wt}(\mathsf{SHL}(\nu_L))} \cdot 2^{-3} \\ \cdot 2^{-\operatorname{wt}(\mathsf{SHL}(\nu_L))} \cdot 2^{-1.415}$

Theorem ([AL16], k = 1)

$$\cdot 2^{-\operatorname{wt}(\mathsf{SHL}(\nu_L))} \cdot 2^{-3}$$

 $\cdot 2^{-\operatorname{wt}(\mathsf{SHL}(\nu_L))} \cdot 2^{-1.415}$

Theorem (Ours)

Theorem ([AL16], k = 1)

$$p = \mathbb{1}_{(I \oplus SHL)(\chi_L) \oplus \mathbf{1} \preccurlyeq SHL(\nu_L)}$$
$$+ \mathbb{1}_{(I \oplus SHL)(\chi_L) \preccurlyeq SHL(\nu_L)}$$

$$\cdot 2^{-\operatorname{wt}(\mathsf{SHL}(\nu_L))} \cdot 2^{-3}$$

 $\cdot 2^{-\operatorname{wt}(\mathsf{SHL}(\nu_L))} \cdot 2^{-1.415}$

Theorem (Ours)

$$T_{1}(\chi_{0},\nu_{0},\chi_{1}) = 2^{-\text{wt}(\mathsf{SHL}(\nu_{0}))-1} + \mathbb{1}_{\chi_{0}\in\{0...0,1...1\}} \times (-1)^{\chi_{1}} \times 2^{-2}$$
$$T_{n-1}(\chi_{L},\nu_{L},\chi_{0}) = 2^{-\text{wt}(\mathsf{SHL}(\nu_{L}))-1} + \mathbb{1}_{\chi_{L}\in\{0...0,1...1\}} \times (-1)^{\chi_{0}} \times 2^{-n}$$

Theorem ([AL16], k = 1)

$$p = \mathbb{1}_{(I \oplus SHL)(\chi_L) \oplus \mathbf{1} \preccurlyeq SHL(\nu_L)}$$
$$+ \mathbb{1}_{(I \oplus SHL)(\chi_L) \preccurlyeq SHL(\nu_L)}$$

$$\cdot 2^{-\operatorname{wt}(\operatorname{SHL}(\nu_L))} \cdot 2^{-3}$$

 $\cdot 2^{-\operatorname{wt}(\operatorname{SHL}(\nu_L))} \cdot 2^{-1.415}$

Theorem (Ours)

$$T_{1}(\chi_{0},\nu_{0},\chi_{1}) = 2^{-1} + (-1)^{\chi_{1}} \times 2^{-2} \in \{2^{-2},2^{-0.415}\}$$
$$T_{n-1}(\chi_{L},\nu_{L},\chi_{0}) = 2^{-\text{wt}(\mathsf{SHL}(\nu_{L}))-1} + \mathbb{1}_{\chi_{L} \in \{0...0,1...1\}} \times (-1)^{\chi_{0}} \times 2^{-n}$$

Theorem ([AL16], k = 1)

$$p = \mathbb{1}_{(I \oplus SHL)(\chi_L) \oplus \mathbf{1} \preccurlyeq SHL(\nu_L)}$$
$$+ \mathbb{1}_{(I \oplus SHL)(\chi_L) \preccurlyeq SHL(\nu_L)}$$

$$\cdot 2^{-\operatorname{wt}(\mathsf{SHL}(\nu_L))} \cdot 2^{-3}$$

 $\cdot 2^{-\operatorname{wt}(\mathsf{SHL}(\nu_L))} \cdot 2^{-1.41}$

Theorem (Ours)

$$T_{1}(\chi_{0},\nu_{0},\chi_{1}) = 2^{-1} + (-1)^{\chi_{1}} \times 2^{-2} \in \{2^{-2},2^{-0.415}\}$$
$$T_{n-1}(\chi_{L},\nu_{L},\chi_{0}) = 2^{-\text{wt}(\mathsf{SHL}(\nu_{L}))-1} + \boxed{\mathbb{1}_{\chi_{L}\in\{0...0,1...1\}}\times(-1)^{\chi_{0}}\times2^{-n}}$$

Theorem ([AL16], k = 1)

$$p = \mathbb{1}_{(I \oplus SHL)(\chi_L) \oplus \mathbf{1} \preccurlyeq SHL(\nu_L)}$$
$$+ \mathbb{1}_{(I \oplus SHL)(\chi_L) \preccurlyeq SHL(\nu_L)}$$

$$\cdot 2^{-\operatorname{wt}(\operatorname{SHL}(\nu_L))} \cdot 2^{-3}$$

 $\cdot 2^{-\operatorname{wt}(\operatorname{SHL}(\nu_L))} \cdot 2^{-1.415}$

Theorem (Ours)

Thm [AL16] holds exactly when $\chi_L \notin \{0 \dots 0, 1 \dots 1\}$, where $(\chi_L || \chi_0) = \alpha \oplus \beta \oplus \Delta$.

• Correction factor: 2x lower or 1.5x higher actual prob.

Theorem ([AL16], k = 1)

$$p = \mathbb{1}_{(I \oplus SHL)(\chi_L) \oplus \mathbf{1} \preccurlyeq SHL(\nu_L)}$$
$$+ \mathbb{1}_{(I \oplus SHL)(\chi_L) \preccurlyeq SHL(\nu_L)}$$

$$\cdot 2^{-\operatorname{wt}(\operatorname{SHL}(\nu_L))} \cdot 2^{-3}$$

 $\cdot 2^{-\operatorname{wt}(\operatorname{SHL}(\nu_L))} \cdot 2^{-1.415}$

Theorem (Ours)

- Correction factor: 2x lower or 1.5x higher actual prob.
- High prob. trail: $\chi_L = 0...0$ is likely to occur (sparse), but negl. correction

Theorem ([AL16], k = 1)

$$p = \mathbb{1}_{(I \oplus SHL)(\chi_L) \oplus \mathbf{1} \preccurlyeq SHL(\nu_L)}$$
$$+ \mathbb{1}_{(I \oplus SHL)(\chi_L) \preccurlyeq SHL(\nu_L)}$$

$$\cdot 2^{-\operatorname{wt}(\operatorname{SHL}(\nu_L))} \cdot 2^{-3}$$

2^{-wt}(SHL(ν_L)) 2^{-1.41}

Theorem (Ours)

- Correction factor: 2x lower or 1.5x higher actual prob.
- High prob. trail: $\chi_L = 0...0$ is likely to occur (sparse), but negl. correction
- Low prob. trail: unlikely to occur (dense)

Theorem ([AL16], k = 1)

$$p = \mathbb{1}_{(I \oplus SHL)(\chi_L) \oplus \mathbf{1} \preccurlyeq SHL(\nu_L)}$$
$$+ \mathbb{1}_{(I \oplus SHL)(\chi_L) \preccurlyeq SHL(\nu_L)}$$

$$\cdot 2^{-\operatorname{wt}(\operatorname{SHL}(\nu_L))} \cdot 2^{-3}$$

 $\cdot 2^{-\operatorname{wt}(\operatorname{SHL}(\nu_L))} \cdot 2^{-1.415}$

Theorem (Ours)

Thm [AL16] holds exactly when $\chi_L \notin \{0 \dots 0, 1 \dots 1\}$, where $(\chi_L || \chi_0) = \alpha \oplus \beta \oplus \Delta$.

- Correction factor: 2x lower or 1.5x higher actual prob.
- High prob. trail: $\chi_L = 0...0$ is likely to occur (sparse), but negl. correction
- Low prob. trail: unlikely to occur (dense)

Conclusion: concrete trails are probably not affected, optimality claims do